Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmat Structured version   Visualization version   Unicode version

Theorem 2llnmat 34810
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2llnmat.m  |-  ./\  =  ( meet `  K )
2llnmat.z  |-  .0.  =  ( 0. `  K )
2llnmat.a  |-  A  =  ( Atoms `  K )
2llnmat.n  |-  N  =  ( LLines `  K )
Assertion
Ref Expression
2llnmat  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( X  ./\ 
Y )  e.  A
)

Proof of Theorem 2llnmat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  K  e.  HL )
2 hlatl 34647 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  K  e.  AtLat
)
4 hllat 34650 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  K  e.  Lat )
6 simpl2 1065 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  X  e.  N )
7 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 2llnmat.n . . . . . . 7  |-  N  =  ( LLines `  K )
97, 8llnbase 34795 . . . . . 6  |-  ( X  e.  N  ->  X  e.  ( Base `  K
) )
106, 9syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  X  e.  ( Base `  K )
)
11 simpl3 1066 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  Y  e.  N )
127, 8llnbase 34795 . . . . . 6  |-  ( Y  e.  N  ->  Y  e.  ( Base `  K
) )
1311, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  Y  e.  ( Base `  K )
)
14 2llnmat.m . . . . . 6  |-  ./\  =  ( meet `  K )
157, 14latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y )  e.  ( Base `  K
) )
165, 10, 13, 15syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( X  ./\ 
Y )  e.  (
Base `  K )
)
17 simprr 796 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( X  ./\ 
Y )  =/=  .0.  )
18 eqid 2622 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
19 2llnmat.z . . . . 5  |-  .0.  =  ( 0. `  K )
20 2llnmat.a . . . . 5  |-  A  =  ( Atoms `  K )
217, 18, 19, 20atlex 34603 . . . 4  |-  ( ( K  e.  AtLat  /\  ( X  ./\  Y )  e.  ( Base `  K
)  /\  ( X  ./\ 
Y )  =/=  .0.  )  ->  E. p  e.  A  p ( le `  K ) ( X 
./\  Y ) )
223, 16, 17, 21syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
23 simp1rl 1126 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  X  =/=  Y
)
24 simp1l 1085 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N ) )
2518, 8llncmp 34808 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  ->  ( X ( le
`  K ) Y  <-> 
X  =  Y ) )
2624, 25syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X ( le `  K ) Y  <->  X  =  Y
) )
27 simp1l1 1154 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  K  e.  HL )
2827, 4syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  K  e.  Lat )
29 simp1l2 1155 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  X  e.  N
)
3029, 9syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  X  e.  (
Base `  K )
)
31 simp1l3 1156 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  Y  e.  N
)
3231, 12syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  Y  e.  (
Base `  K )
)
337, 18, 14latleeqm1 17079 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X ( le `  K ) Y  <->  ( X  ./\ 
Y )  =  X ) )
3428, 30, 32, 33syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X ( le `  K ) Y  <->  ( X  ./\  Y )  =  X ) )
3526, 34bitr3d 270 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X  =  Y  <->  ( X  ./\  Y )  =  X ) )
3635necon3bid 2838 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X  =/= 
Y  <->  ( X  ./\  Y )  =/=  X ) )
3723, 36mpbid 222 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X  ./\  Y )  =/=  X )
38 simp3 1063 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p ( le
`  K ) ( X  ./\  Y )
)
397, 18, 14latmle1 17076 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( X  ./\  Y ) ( le `  K ) X )
4028, 30, 32, 39syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X  ./\  Y ) ( le `  K ) X )
41 hlpos 34652 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
4227, 41syl 17 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  K  e.  Poset )
437, 20atbase 34576 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  ( Base `  K
) )
44433ad2ant2 1083 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p  e.  (
Base `  K )
)
4528, 30, 32, 15syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( X  ./\  Y )  e.  ( Base `  K ) )
46 simp2 1062 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p  e.  A
)
477, 18, 28, 44, 45, 30, 38, 40lattrd 17058 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p ( le
`  K ) X )
48 eqid 2622 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
4918, 48, 20, 8atcvrlln2 34805 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  p  e.  A  /\  X  e.  N )  /\  p ( le `  K ) X )  ->  p (  <o  `  K ) X )
5027, 46, 29, 47, 49syl31anc 1329 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p (  <o  `  K ) X )
517, 18, 48cvrnbtwn4 34566 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
p  e.  ( Base `  K )  /\  X  e.  ( Base `  K
)  /\  ( X  ./\ 
Y )  e.  (
Base `  K )
)  /\  p (  <o  `  K ) X )  ->  ( (
p ( le `  K ) ( X 
./\  Y )  /\  ( X  ./\  Y ) ( le `  K
) X )  <->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) ) )
5242, 44, 30, 45, 50, 51syl131anc 1339 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( ( p ( le `  K
) ( X  ./\  Y )  /\  ( X 
./\  Y ) ( le `  K ) X )  <->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) ) )
5338, 40, 52mpbi2and 956 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( p  =  ( X  ./\  Y
)  \/  ( X 
./\  Y )  =  X ) )
54 neor 2885 . . . . . . . 8  |-  ( ( p  =  ( X 
./\  Y )  \/  ( X  ./\  Y
)  =  X )  <-> 
( p  =/=  ( X  ./\  Y )  -> 
( X  ./\  Y
)  =  X ) )
5553, 54sylib 208 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( p  =/=  ( X  ./\  Y
)  ->  ( X  ./\ 
Y )  =  X ) )
5655necon1d 2816 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  ( ( X 
./\  Y )  =/= 
X  ->  p  =  ( X  ./\  Y ) ) )
5737, 56mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y )  =/= 
.0.  ) )  /\  p  e.  A  /\  p ( le `  K ) ( X 
./\  Y ) )  ->  p  =  ( X  ./\  Y )
)
58573exp 1264 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( p  e.  A  ->  ( p ( le `  K
) ( X  ./\  Y )  ->  p  =  ( X  ./\  Y ) ) ) )
5958reximdvai 3015 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( E. p  e.  A  p
( le `  K
) ( X  ./\  Y )  ->  E. p  e.  A  p  =  ( X  ./\  Y ) ) )
6022, 59mpd 15 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  E. p  e.  A  p  =  ( X  ./\  Y ) )
61 risset 3062 . 2  |-  ( ( X  ./\  Y )  e.  A  <->  E. p  e.  A  p  =  ( X  ./\ 
Y ) )
6260, 61sylibr 224 1  |-  ( ( ( K  e.  HL  /\  X  e.  N  /\  Y  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  ->  ( X  ./\ 
Y )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   Posetcpo 16940   meetcmee 16945   0.cp0 17037   Latclat 17045    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LLinesclln 34777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784
This theorem is referenced by:  2at0mat0  34811  ps-2c  34814  2llnmeqat  34857  dalemcea  34946  dalem2  34947  dalem21  34980  dalem54  35012  cdlemc5  35482
  Copyright terms: Public domain W3C validator