Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat4 Structured version   Visualization version   Unicode version

Theorem cvrat4 34729
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 29256 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat4.b  |-  B  =  ( Base `  K
)
cvrat4.l  |-  .<_  =  ( le `  K )
cvrat4.j  |-  .\/  =  ( join `  K )
cvrat4.z  |-  .0.  =  ( 0. `  K )
cvrat4.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvrat4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
Distinct variable groups:    A, r    B, r    .\/ , r    K, r    .<_ , r    P, r    Q, r    X, r
Allowed substitution hint:    .0. ( r)

Proof of Theorem cvrat4
StepHypRef Expression
1 hlatl 34647 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
21adantr 481 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  AtLat )
3 simpr1 1067 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  X  e.  B )
4 cvrat4.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
5 cvrat4.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
6 cvrat4.z . . . . . . . . . . 11  |-  .0.  =  ( 0. `  K )
7 cvrat4.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
84, 5, 6, 7atlex 34603 . . . . . . . . . 10  |-  ( ( K  e.  AtLat  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  E. r  e.  A  r  .<_  X )
983exp 1264 . . . . . . . . 9  |-  ( K  e.  AtLat  ->  ( X  e.  B  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) ) )
102, 3, 9sylc 65 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) )
1110adantr 481 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( X  =/=  .0.  ->  E. r  e.  A  r  .<_  X ) )
12 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  K  e.  HL )
13 simplr3 1105 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  Q  e.  A )
14 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  r  e.  A )
15 cvrat4.j . . . . . . . . . . . . . . 15  |-  .\/  =  ( join `  K )
165, 15, 7hlatlej1 34661 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  r  e.  A )  ->  Q  .<_  ( Q  .\/  r ) )
1712, 13, 14, 16syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  r  e.  A )  ->  Q  .<_  ( Q  .\/  r
) )
18 breq1 4656 . . . . . . . . . . . . 13  |-  ( P  =  Q  ->  ( P  .<_  ( Q  .\/  r )  <->  Q  .<_  ( Q  .\/  r ) ) )
1917, 18syl5ibr 236 . . . . . . . . . . . 12  |-  ( P  =  Q  ->  (
( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  r  e.  A )  ->  P  .<_  ( Q  .\/  r ) ) )
2019expd 452 . . . . . . . . . . 11  |-  ( P  =  Q  ->  (
( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
r  e.  A  ->  P  .<_  ( Q  .\/  r ) ) ) )
2120impcom 446 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
r  e.  A  ->  P  .<_  ( Q  .\/  r ) ) )
2221anim2d 589 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
( r  .<_  X  /\  r  e.  A )  ->  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2322expcomd 454 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  (
r  e.  A  -> 
( r  .<_  X  -> 
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
2423reximdvai 3015 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( E. r  e.  A  r  .<_  X  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2511, 24syld 47 . . . . . 6  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  P  =  Q )  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
2625ex 450 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
2726a1i 11 . . . 4  |-  ( P 
.<_  ( X  .\/  Q
)  ->  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A )
)  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) ) )
2827com4l 92 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( X  =/=  .0.  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) ) )
2928imp4a 614 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =  Q  ->  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
30 hllat 34650 . . . . . . . . . . . . . 14  |-  ( K  e.  HL  ->  K  e.  Lat )
3130adantr 481 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  Lat )
32 simpr3 1069 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  A )
334, 7atbase 34576 . . . . . . . . . . . . . 14  |-  ( Q  e.  A  ->  Q  e.  B )
3432, 33syl 17 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  Q  e.  B )
354, 5, 15latleeqj2 17064 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .<_  X  <->  ( X  .\/  Q )  =  X ) )
3631, 34, 3, 35syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  X  <->  ( X  .\/  Q )  =  X ) )
3736biimpa 501 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  Q  .<_  X )  ->  ( X  .\/  Q )  =  X )
3837breq2d 4665 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  <->  P  .<_  X ) )
3938biimpa 501 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  X )
4039expl 648 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  X ) )
41 simpl 473 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  HL )
42 simpr2 1068 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  A )
435, 15, 7hlatlej2 34662 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  P  e.  A )  ->  P  .<_  ( Q  .\/  P ) )
4441, 32, 42, 43syl3anc 1326 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  .<_  ( Q  .\/  P
) )
4540, 44jctird 567 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P
) ) ) )
4645, 42jctild 566 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) ) )
4746impl 650 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) )
48 breq1 4656 . . . . . . 7  |-  ( r  =  P  ->  (
r  .<_  X  <->  P  .<_  X ) )
49 oveq2 6658 . . . . . . . 8  |-  ( r  =  P  ->  ( Q  .\/  r )  =  ( Q  .\/  P
) )
5049breq2d 4665 . . . . . . 7  |-  ( r  =  P  ->  ( P  .<_  ( Q  .\/  r )  <->  P  .<_  ( Q  .\/  P ) ) )
5148, 50anbi12d 747 . . . . . 6  |-  ( r  =  P  ->  (
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) )  <->  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) ) )
5251rspcev 3309 . . . . 5  |-  ( ( P  e.  A  /\  ( P  .<_  X  /\  P  .<_  ( Q  .\/  P ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5347, 52syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5453adantrl 752 . . 3  |-  ( ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A ) )  /\  Q  .<_  X )  /\  ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
5554exp31 630 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q  .<_  X  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
56 simpr 477 . . 3  |-  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  P  .<_  ( X  .\/  Q
) )
57 ioran 511 . . . . 5  |-  ( -.  ( P  =  Q  \/  Q  .<_  X )  <-> 
( -.  P  =  Q  /\  -.  Q  .<_  X ) )
58 df-ne 2795 . . . . . 6  |-  ( P  =/=  Q  <->  -.  P  =  Q )
5958anbi1i 731 . . . . 5  |-  ( ( P  =/=  Q  /\  -.  Q  .<_  X )  <-> 
( -.  P  =  Q  /\  -.  Q  .<_  X ) )
6057, 59bitr4i 267 . . . 4  |-  ( -.  ( P  =  Q  \/  Q  .<_  X )  <-> 
( P  =/=  Q  /\  -.  Q  .<_  X ) )
61 eqid 2622 . . . . . . . . . 10  |-  ( meet `  K )  =  (
meet `  K )
624, 5, 15, 61, 7cvrat3 34728 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X  /\  P  .<_  ( X  .\/  Q ) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
) )
63623expd 1284 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  =/=  Q  ->  ( -.  Q  .<_  X  -> 
( P  .<_  ( X 
.\/  Q )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A ) ) ) )
6463imp4c 617 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
) )
654, 7atbase 34576 . . . . . . . . . . . . 13  |-  ( P  e.  A  ->  P  e.  B )
6642, 65syl 17 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  P  e.  B )
674, 15latjcl 17051 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
6831, 66, 34, 67syl3anc 1326 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  e.  B )
694, 5, 61latmle1 17076 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X )
7031, 3, 68, 69syl3anc 1326 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X )
7170adantr 481 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  X )
72 simpll 790 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  K  e.  HL )
7363imp44 622 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  e.  A
)
74 simplr2 1104 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  P  e.  A )
7534adantr 481 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  Q  e.  B )
7673, 74, 753jca 1242 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )
7772, 76jca 554 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) ) )
784, 5, 61, 6, 7atnle 34604 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  AtLat  /\  Q  e.  A  /\  X  e.  B )  ->  ( -.  Q  .<_  X  <->  ( Q
( meet `  K ) X )  =  .0.  ) )
792, 32, 3, 78syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  ( Q
( meet `  K ) X )  =  .0.  ) )
804, 61latmcom 17075 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q ( meet `  K ) X )  =  ( X (
meet `  K ) Q ) )
8131, 34, 3, 80syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) X )  =  ( X ( meet `  K ) Q ) )
8281eqeq1d 2624 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q ( meet `  K ) X )  =  .0.  <->  ( X
( meet `  K ) Q )  =  .0.  ) )
8379, 82bitrd 268 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  <->  ( X
( meet `  K ) Q )  =  .0.  ) )
844, 61latmcl 17052 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B )
8531, 3, 68, 84syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)
8685, 3, 343jca 1242 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B  /\  X  e.  B  /\  Q  e.  B ) )
8731, 86jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( K  e.  Lat  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B  /\  X  e.  B  /\  Q  e.  B ) ) )
884, 5, 61latmlem2 17082 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Lat  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  B  /\  X  e.  B  /\  Q  e.  B
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  .<_  ( Q
( meet `  K ) X ) ) )
8987, 70, 88sylc 65 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( Q ( meet `  K
) X ) )
9089, 81breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( X ( meet `  K
) Q ) )
91 breq2 4657 . . . . . . . . . . . . . . . 16  |-  ( ( X ( meet `  K
) Q )  =  .0.  ->  ( ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  ( X ( meet `  K
) Q )  <->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  .<_  .0.  )
)
9290, 91syl5ibcom 235 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) Q )  =  .0.  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  .<_  .0.  ) )
93 hlop 34649 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  HL  ->  K  e.  OP )
9493adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  K  e.  OP )
954, 61latmcl 17052 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  e.  B )
9631, 34, 85, 95syl3anc 1326 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  e.  B )
974, 5, 6ople0 34474 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OP  /\  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  e.  B )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  .<_  .0. 
<->  ( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
9894, 96, 97syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  .<_  .0. 
<->  ( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
9992, 98sylibd 229 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X ( meet `  K ) Q )  =  .0.  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  =  .0.  ) )
10083, 99sylbid 230 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  Q  .<_  X  -> 
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ) )
101100imp 445 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  -.  Q  .<_  X )  -> 
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  )
102101adantrl 752 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  ( P  =/=  Q  /\  -.  Q  .<_  X ) )  ->  ( Q (
meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  .0.  )
103102adantrr 753 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  .0.  )
1044, 5, 61latmle2 17077 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( P  .\/  Q )  e.  B )  -> 
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  ( P  .\/  Q
) )
10531, 3, 68, 104syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( P 
.\/  Q ) )
1064, 15latjcom 17059 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
10731, 66, 34, 106syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
108105, 107breqtrd 4679 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( Q 
.\/  P ) )
109108adantr 481 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  ( Q 
.\/  P ) )
11030adantr 481 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  K  e.  Lat )
111 simpr3 1069 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  Q  e.  B )
112 simpr1 1067 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A
)
1134, 7atbase 34576 . . . . . . . . . . . . . 14  |-  ( ( X ( meet `  K
) ( P  .\/  Q ) )  e.  A  ->  ( X ( meet `  K ) ( P 
.\/  Q ) )  e.  B )
114112, 113syl 17 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)
1154, 61latmcom 17075 . . . . . . . . . . . . 13  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( X ( meet `  K
) ( P  .\/  Q ) )  e.  B
)  ->  ( Q
( meet `  K )
( X ( meet `  K ) ( P 
.\/  Q ) ) )  =  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q ) )
116110, 111, 114, 115syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  ( Q ( meet `  K
) ( X (
meet `  K )
( P  .\/  Q
) ) )  =  ( ( X (
meet `  K )
( P  .\/  Q
) ) ( meet `  K ) Q ) )
117116eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  <->  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q )  =  .0.  ) )
1184, 5, 15, 61, 6, 7hlexch3 34677 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
)  /\  ( ( X ( meet `  K
) ( P  .\/  Q ) ) ( meet `  K ) Q )  =  .0.  )  -> 
( ( X (
meet `  K )
( P  .\/  Q
) )  .<_  ( Q 
.\/  P )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
1191183expia 1267 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( ( X (
meet `  K )
( P  .\/  Q
) ) ( meet `  K ) Q )  =  .0.  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  ( Q  .\/  P
)  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
120117, 119sylbid 230 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( ( X (
meet `  K )
( P  .\/  Q
) )  e.  A  /\  P  e.  A  /\  Q  e.  B
) )  ->  (
( Q ( meet `  K ) ( X ( meet `  K
) ( P  .\/  Q ) ) )  =  .0.  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  ( Q 
.\/  P )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
12177, 103, 109, 120syl3c 66 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) )
12271, 121jca 554 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  /\  (
( P  =/=  Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X 
.\/  Q ) ) )  ->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
123122ex 450 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
12464, 123jcad 555 . . . . . 6  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  (
( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) ) )
125 breq1 4656 . . . . . . . 8  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  (
r  .<_  X  <->  ( X
( meet `  K )
( P  .\/  Q
) )  .<_  X ) )
126 oveq2 6658 . . . . . . . . 9  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  ( Q  .\/  r )  =  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) )
127126breq2d 4665 . . . . . . . 8  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  ( P  .<_  ( Q  .\/  r )  <->  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )
128125, 127anbi12d 747 . . . . . . 7  |-  ( r  =  ( X (
meet `  K )
( P  .\/  Q
) )  ->  (
( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) )  <->  ( ( X ( meet `  K
) ( P  .\/  Q ) )  .<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) ) )
129128rspcev 3309 . . . . . 6  |-  ( ( ( X ( meet `  K ) ( P 
.\/  Q ) )  e.  A  /\  (
( X ( meet `  K ) ( P 
.\/  Q ) ) 
.<_  X  /\  P  .<_  ( Q  .\/  ( X ( meet `  K
) ( P  .\/  Q ) ) ) ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) )
130124, 129syl6 35 . . . . 5  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( ( P  =/= 
Q  /\  -.  Q  .<_  X )  /\  P  .<_  ( X  .\/  Q
) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
131130expd 452 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  /\  -.  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13260, 131syl5bi 232 . . 3  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  ( P  =  Q  \/  Q  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13356, 132syl7 74 . 2  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  ( -.  ( P  =  Q  \/  Q  .<_  X )  ->  ( ( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q
) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) ) )
13429, 55, 133ecase3d 984 1  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  P  e.  A  /\  Q  e.  A
) )  ->  (
( X  =/=  .0.  /\  P  .<_  ( X  .\/  Q ) )  ->  E. r  e.  A  ( r  .<_  X  /\  P  .<_  ( Q  .\/  r ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   0.cp0 17037   Latclat 17045   OPcops 34459   Atomscatm 34550   AtLatcal 34551   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cvrat42  34730  ps-2  34764
  Copyright terms: Public domain W3C validator