Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle Structured version   Visualization version   Unicode version

Theorem atnle 34604
Description: Two ways of expressing "an atom is not less than or equal to a lattice element." (atnssm0 29235 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atnle.b  |-  B  =  ( Base `  K
)
atnle.l  |-  .<_  =  ( le `  K )
atnle.m  |-  ./\  =  ( meet `  K )
atnle.z  |-  .0.  =  ( 0. `  K )
atnle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atnle  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )

Proof of Theorem atnle
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . 6  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  K  e.  AtLat )
2 atllat 34587 . . . . . . . . 9  |-  ( K  e.  AtLat  ->  K  e.  Lat )
323ad2ant1 1082 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  K  e.  Lat )
4 atnle.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
5 atnle.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
64, 5atbase 34576 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  B )
763ad2ant2 1083 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  P  e.  B )
8 simp3 1063 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  X  e.  B )
9 atnle.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
104, 9latmcl 17052 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  ./\  X
)  e.  B )
113, 7, 8, 10syl3anc 1326 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( P  ./\  X )  e.  B )
1211adantr 481 . . . . . 6  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  ( P  ./\  X
)  e.  B )
13 simpr 477 . . . . . 6  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  ( P  ./\  X
)  =/=  .0.  )
14 atnle.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 atnle.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
164, 14, 15, 5atlex 34603 . . . . . 6  |-  ( ( K  e.  AtLat  /\  ( P  ./\  X )  e.  B  /\  ( P 
./\  X )  =/= 
.0.  )  ->  E. y  e.  A  y  .<_  ( P  ./\  X )
)
171, 12, 13, 16syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  E. y  e.  A  y  .<_  ( P  ./\  X ) )
18 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  K  e.  AtLat
)
1918, 2syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  K  e.  Lat )
204, 5atbase 34576 . . . . . . . . . 10  |-  ( y  e.  A  ->  y  e.  B )
2120adantl 482 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  y  e.  B )
22 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  P  e.  A )
2322, 6syl 17 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  P  e.  B )
24 simpl3 1066 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  X  e.  B )
254, 14, 9latlem12 17078 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( y  e.  B  /\  P  e.  B  /\  X  e.  B
) )  ->  (
( y  .<_  P  /\  y  .<_  X )  <->  y  .<_  ( P  ./\  X )
) )
2619, 21, 23, 24, 25syl13anc 1328 . . . . . . . 8  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  ( (
y  .<_  P  /\  y  .<_  X )  <->  y  .<_  ( P  ./\  X )
) )
27 simpr 477 . . . . . . . . . . 11  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  y  e.  A )
2814, 5atcmp 34598 . . . . . . . . . . 11  |-  ( ( K  e.  AtLat  /\  y  e.  A  /\  P  e.  A )  ->  (
y  .<_  P  <->  y  =  P ) )
2918, 27, 22, 28syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  ( y  .<_  P  <->  y  =  P ) )
30 breq1 4656 . . . . . . . . . . 11  |-  ( y  =  P  ->  (
y  .<_  X  <->  P  .<_  X ) )
3130biimpd 219 . . . . . . . . . 10  |-  ( y  =  P  ->  (
y  .<_  X  ->  P  .<_  X ) )
3229, 31syl6bi 243 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  ( y  .<_  P  ->  ( y  .<_  X  ->  P  .<_  X ) ) )
3332impd 447 . . . . . . . 8  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  ( (
y  .<_  P  /\  y  .<_  X )  ->  P  .<_  X ) )
3426, 33sylbird 250 . . . . . . 7  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  y  e.  A
)  ->  ( y  .<_  ( P  ./\  X
)  ->  P  .<_  X ) )
3534adantlr 751 . . . . . 6  |-  ( ( ( ( K  e. 
AtLat  /\  P  e.  A  /\  X  e.  B
)  /\  ( P  ./\ 
X )  =/=  .0.  )  /\  y  e.  A
)  ->  ( y  .<_  ( P  ./\  X
)  ->  P  .<_  X ) )
3635rexlimdva 3031 . . . . 5  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  ( E. y  e.  A  y  .<_  ( P 
./\  X )  ->  P  .<_  X ) )
3717, 36mpd 15 . . . 4  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =/=  .0.  )  ->  P  .<_  X )
3837ex 450 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  (
( P  ./\  X
)  =/=  .0.  ->  P 
.<_  X ) )
3938necon1bd 2812 . 2  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P  .<_  X  -> 
( P  ./\  X
)  =  .0.  )
)
4015, 5atn0 34595 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  P  =/=  .0.  )
41403adant3 1081 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  P  =/=  .0.  )
424, 14, 9latleeqm1 17079 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .<_  X  <->  ( P  ./\ 
X )  =  P ) )
433, 7, 8, 42syl3anc 1326 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( P  .<_  X  <->  ( P  ./\ 
X )  =  P ) )
4443adantr 481 . . . . . 6  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  X  <->  ( P  ./\ 
X )  =  P ) )
45 eqeq1 2626 . . . . . . . 8  |-  ( ( P  ./\  X )  =  P  ->  ( ( P  ./\  X )  =  .0.  <->  P  =  .0.  ) )
4645biimpcd 239 . . . . . . 7  |-  ( ( P  ./\  X )  =  .0.  ->  ( ( P  ./\  X )  =  P  ->  P  =  .0.  ) )
4746adantl 482 . . . . . 6  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( ( P  ./\  X )  =  P  ->  P  =  .0.  )
)
4844, 47sylbid 230 . . . . 5  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  .<_  X  ->  P  =  .0.  )
)
4948necon3ad 2807 . . . 4  |-  ( ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  /\  ( P  ./\  X
)  =  .0.  )  ->  ( P  =/=  .0.  ->  -.  P  .<_  X ) )
5049ex 450 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  (
( P  ./\  X
)  =  .0.  ->  ( P  =/=  .0.  ->  -.  P  .<_  X )
) )
5141, 50mpid 44 . 2  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  (
( P  ./\  X
)  =  .0.  ->  -.  P  .<_  X )
)
5239, 51impbid 202 1  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P  .<_  X  <->  ( P  ./\ 
X )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   meetcmee 16945   0.cp0 17037   Latclat 17045   Atomscatm 34550   AtLatcal 34551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585
This theorem is referenced by:  atnem0  34605  iscvlat2N  34611  cvlexch3  34619  cvlexch4N  34620  cvlcvrp  34627  intnatN  34693  cvrat4  34729  dalem24  34983  cdlema2N  35078  llnexchb2lem  35154  lhpmat  35316  ltrnmwOLD  35438  cdleme15b  35562  cdlemednpq  35586  cdleme20zN  35588  cdleme20yOLD  35590  cdleme22cN  35630  dihmeetlem7N  36599  dihmeetlem17N  36612
  Copyright terms: Public domain W3C validator