Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   Unicode version

Theorem bj-rest10 33041
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 20973 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10  |-  ( X  e.  V  ->  ( X  =/=  (/)  ->  ( Xt  (/) )  =  { (/) } ) )

Proof of Theorem bj-rest10
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . . . 6  |-  (/)  e.  _V
2 elrest 16088 . . . . . 6  |-  ( ( X  e.  V  /\  (/) 
e.  _V )  ->  (
x  e.  ( Xt  (/) ) 
<->  E. y  e.  X  x  =  ( y  i^i  (/) ) ) )
31, 2mpan2 707 . . . . 5  |-  ( X  e.  V  ->  (
x  e.  ( Xt  (/) ) 
<->  E. y  e.  X  x  =  ( y  i^i  (/) ) ) )
4 in0 3968 . . . . . . . . 9  |-  ( y  i^i  (/) )  =  (/)
54eqeq2i 2634 . . . . . . . 8  |-  ( x  =  ( y  i^i  (/) )  <->  x  =  (/) )
65rexbii 3041 . . . . . . 7  |-  ( E. y  e.  X  x  =  ( y  i^i  (/) )  <->  E. y  e.  X  x  =  (/) )
7 df-rex 2918 . . . . . . . 8  |-  ( E. y  e.  X  x  =  (/)  <->  E. y ( y  e.  X  /\  x  =  (/) ) )
8 19.41v 1914 . . . . . . . . 9  |-  ( E. y ( y  e.  X  /\  x  =  (/) )  <->  ( E. y 
y  e.  X  /\  x  =  (/) ) )
9 n0 3931 . . . . . . . . . . 11  |-  ( X  =/=  (/)  <->  E. y  y  e.  X )
109bicomi 214 . . . . . . . . . 10  |-  ( E. y  y  e.  X  <->  X  =/=  (/) )
1110anbi1i 731 . . . . . . . . 9  |-  ( ( E. y  y  e.  X  /\  x  =  (/) )  <->  ( X  =/=  (/)  /\  x  =  (/) ) )
128, 11bitri 264 . . . . . . . 8  |-  ( E. y ( y  e.  X  /\  x  =  (/) )  <->  ( X  =/=  (/)  /\  x  =  (/) ) )
137, 12bitri 264 . . . . . . 7  |-  ( E. y  e.  X  x  =  (/)  <->  ( X  =/=  (/)  /\  x  =  (/) ) )
146, 13bitri 264 . . . . . 6  |-  ( E. y  e.  X  x  =  ( y  i^i  (/) )  <->  ( X  =/=  (/)  /\  x  =  (/) ) )
1514baib 944 . . . . 5  |-  ( X  =/=  (/)  ->  ( E. y  e.  X  x  =  ( y  i^i  (/) )  <->  x  =  (/) ) )
163, 15sylan9bb 736 . . . 4  |-  ( ( X  e.  V  /\  X  =/=  (/) )  ->  (
x  e.  ( Xt  (/) ) 
<->  x  =  (/) ) )
17 velsn 4193 . . . 4  |-  ( x  e.  { (/) }  <->  x  =  (/) )
1816, 17syl6bbr 278 . . 3  |-  ( ( X  e.  V  /\  X  =/=  (/) )  ->  (
x  e.  ( Xt  (/) ) 
<->  x  e.  { (/) } ) )
1918eqrdv 2620 . 2  |-  ( ( X  e.  V  /\  X  =/=  (/) )  ->  ( Xt  (/) )  =  { (/) } )
2019ex 450 1  |-  ( X  e.  V  ->  ( X  =/=  (/)  ->  ( Xt  (/) )  =  { (/) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    i^i cin 3573   (/)c0 3915   {csn 4177  (class class class)co 6650   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rest 16083
This theorem is referenced by:  bj-rest10b  33042
  Copyright terms: Public domain W3C validator