MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin Structured version   Visualization version   Unicode version

Theorem blin 22226
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )

Proof of Theorem blin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 xmetcl 22136 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  x  e.  X
)  ->  ( P D x )  e. 
RR* )
213expa 1265 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
32adantlr 751 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( P D x )  e.  RR* )
4 simplrl 800 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  R  e.  RR* )
5 simplrr 801 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  S  e.  RR* )
6 xrltmin 12013 . . . . 5  |-  ( ( ( P D x )  e.  RR*  /\  R  e.  RR*  /\  S  e. 
RR* )  ->  (
( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
73, 4, 5, 6syl3anc 1326 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  /\  x  e.  X )  ->  ( ( P D x )  <  if ( R  <_  S ,  R ,  S )  <->  ( ( P D x )  <  R  /\  ( P D x )  <  S ) ) )
87pm5.32da 673 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
9 ifcl 4130 . . . 4  |-  ( ( R  e.  RR*  /\  S  e.  RR* )  ->  if ( R  <_  S ,  R ,  S )  e.  RR* )
10 elbl 22193 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) if ( R  <_  S ,  R ,  S )
)  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
11103expa 1265 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  if ( R  <_  S ,  R ,  S )  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
129, 11sylan2 491 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) )  <->  ( x  e.  X  /\  ( P D x )  < 
if ( R  <_  S ,  R ,  S ) ) ) )
13 elbl 22193 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
14133expa 1265 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  R  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1514adantrr 753 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
16 elbl 22193 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
17163expa 1265 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  (
x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1817adantrl 752 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( P ( ball `  D
) S )  <->  ( x  e.  X  /\  ( P D x )  < 
S ) ) )
1915, 18anbi12d 747 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) )  <-> 
( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) ) )
20 elin 3796 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i  ( P ( ball `  D ) S ) )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  ( P ( ball `  D
) S ) ) )
21 anandi 871 . . . 4  |-  ( ( x  e.  X  /\  ( ( P D x )  <  R  /\  ( P D x )  <  S ) )  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  (
x  e.  X  /\  ( P D x )  <  S ) ) )
2219, 20, 213bitr4g 303 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  ( x  e.  X  /\  (
( P D x )  <  R  /\  ( P D x )  <  S ) ) ) )
238, 12, 223bitr4rd 301 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( x  e.  ( ( P ( ball `  D ) R )  i^i  ( P (
ball `  D ) S ) )  <->  x  e.  ( P ( ball `  D
) if ( R  <_  S ,  R ,  S ) ) ) )
2423eqrdv 2620 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  S  e.  RR* ) )  -> 
( ( P (
ball `  D ) R )  i^i  ( P ( ball `  D
) S ) )  =  ( P (
ball `  D ) if ( R  <_  S ,  R ,  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  blin2  22234
  Copyright terms: Public domain W3C validator