HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnfn Structured version   Visualization version   Unicode version

Theorem ellnfn 28742
Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnfn  |-  ( T  e.  LinFn 
<->  ( T : ~H --> CC  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
Distinct variable group:    x, y, z, T

Proof of Theorem ellnfn
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq1 6190 . . . . . 6  |-  ( t  =  T  ->  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( T `  ( ( x  .h  y )  +h  z
) ) )
2 fveq1 6190 . . . . . . . 8  |-  ( t  =  T  ->  (
t `  y )  =  ( T `  y ) )
32oveq2d 6666 . . . . . . 7  |-  ( t  =  T  ->  (
x  x.  ( t `
 y ) )  =  ( x  x.  ( T `  y
) ) )
4 fveq1 6190 . . . . . . 7  |-  ( t  =  T  ->  (
t `  z )  =  ( T `  z ) )
53, 4oveq12d 6668 . . . . . 6  |-  ( t  =  T  ->  (
( x  x.  (
t `  y )
)  +  ( t `
 z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) )
61, 5eqeq12d 2637 . . . . 5  |-  ( t  =  T  ->  (
( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  x.  ( t `
 y ) )  +  ( t `  z ) )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  ( T `  y )
)  +  ( T `
 z ) ) ) )
76ralbidv 2986 . . . 4  |-  ( t  =  T  ->  ( A. z  e.  ~H  ( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  x.  ( t `
 y ) )  +  ( t `  z ) )  <->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  ( T `  y )
)  +  ( T `
 z ) ) ) )
872ralbidv 2989 . . 3  |-  ( t  =  T  ->  ( A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  (
t `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( t `  y ) )  +  ( t `  z
) )  <->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
9 df-lnfn 28707 . . 3  |-  LinFn  =  {
t  e.  ( CC 
^m  ~H )  |  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( t `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  (
t `  y )
)  +  ( t `
 z ) ) }
108, 9elrab2 3366 . 2  |-  ( T  e.  LinFn 
<->  ( T  e.  ( CC  ^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e.  ~H  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
11 cnex 10017 . . . 4  |-  CC  e.  _V
12 ax-hilex 27856 . . . 4  |-  ~H  e.  _V
1311, 12elmap 7886 . . 3  |-  ( T  e.  ( CC  ^m  ~H )  <->  T : ~H --> CC )
1413anbi1i 731 . 2  |-  ( ( T  e.  ( CC 
^m  ~H )  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  ( T `  y )
)  +  ( T `
 z ) ) )  <->  ( T : ~H
--> CC  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
1510, 14bitri 264 1  |-  ( T  e.  LinFn 
<->  ( T : ~H --> CC  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( T `  y ) )  +  ( T `  z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    + caddc 9939    x. cmul 9941   ~Hchil 27776    +h cva 27777    .h csm 27778   LinFnclf 27811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lnfn 28707
This theorem is referenced by:  lnfnf  28743  lnfnl  28790  bralnfn  28807  0lnfn  28844  cnlnadjlem2  28927
  Copyright terms: Public domain W3C validator