MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvtrclfvcnv Structured version   Visualization version   Unicode version

Theorem brcnvtrclfvcnv 13746
Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020.)
Assertion
Ref Expression
brcnvtrclfvcnv  |-  ( ( R  e.  U  /\  A  e.  V  /\  B  e.  W )  ->  ( A `' ( t+ `  `' R ) B  <->  A. r
( ( `' R  C_  r  /\  ( r  o.  r )  C_  r )  ->  B
r A ) ) )
Distinct variable groups:    A, r    B, r    R, r
Allowed substitution hints:    U( r)    V( r)    W( r)

Proof of Theorem brcnvtrclfvcnv
StepHypRef Expression
1 cnvexg 7112 . 2  |-  ( R  e.  U  ->  `' R  e.  _V )
2 brcnvtrclfv 13744 . 2  |-  ( ( `' R  e.  _V  /\  A  e.  V  /\  B  e.  W )  ->  ( A `' ( t+ `  `' R ) B  <->  A. r
( ( `' R  C_  r  /\  ( r  o.  r )  C_  r )  ->  B
r A ) ) )
31, 2syl3an1 1359 1  |-  ( ( R  e.  U  /\  A  e.  V  /\  B  e.  W )  ->  ( A `' ( t+ `  `' R ) B  <->  A. r
( ( `' R  C_  r  /\  ( r  o.  r )  C_  r )  ->  B
r A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    e. wcel 1990   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   `'ccnv 5113    o. ccom 5118   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator