MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem1 Structured version   Visualization version   Unicode version

Theorem pgpfaclem1 18480
Description: Lemma for pgpfac 18483. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b  |-  B  =  ( Base `  G
)
pgpfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
pgpfac.g  |-  ( ph  ->  G  e.  Abel )
pgpfac.p  |-  ( ph  ->  P pGrp  G )
pgpfac.f  |-  ( ph  ->  B  e.  Fin )
pgpfac.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac.a  |-  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
pgpfac.h  |-  H  =  ( Gs  U )
pgpfac.k  |-  K  =  (mrCls `  (SubGrp `  H
) )
pgpfac.o  |-  O  =  ( od `  H
)
pgpfac.e  |-  E  =  (gEx `  H )
pgpfac.0  |-  .0.  =  ( 0g `  H )
pgpfac.l  |-  .(+)  =  (
LSSum `  H )
pgpfac.1  |-  ( ph  ->  E  =/=  1 )
pgpfac.x  |-  ( ph  ->  X  e.  U )
pgpfac.oe  |-  ( ph  ->  ( O `  X
)  =  E )
pgpfac.w  |-  ( ph  ->  W  e.  (SubGrp `  H ) )
pgpfac.i  |-  ( ph  ->  ( ( K `  { X } )  i^i 
W )  =  {  .0.  } )
pgpfac.s  |-  ( ph  ->  ( ( K `  { X } )  .(+)  W )  =  U )
pgpfac.2  |-  ( ph  ->  S  e. Word  C )
pgpfac.4  |-  ( ph  ->  G dom DProd  S )
pgpfac.5  |-  ( ph  ->  ( G DProd  S )  =  W )
pgpfac.t  |-  T  =  ( S ++  <" ( K `  { X } ) "> )
Assertion
Ref Expression
pgpfaclem1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Distinct variable groups:    t, s, C    s, r, t, G    K, r, s    ph, t    B, s, t    U, r, s, t    W, s, t    X, r, s    T, s
Allowed substitution hints:    ph( s, r)    B( r)    C( r)    P( t, s, r)    .(+) ( t, s, r)    S( t, s, r)    T( t, r)    E( t, s, r)    H( t, s, r)    K( t)    O( t, s, r)    W( r)    X( t)    .0. ( t,
s, r)

Proof of Theorem pgpfaclem1
StepHypRef Expression
1 pgpfac.t . . 3  |-  T  =  ( S ++  <" ( K `  { X } ) "> )
2 pgpfac.2 . . 3  |-  ( ph  ->  S  e. Word  C )
3 pgpfac.u . . . . . . . . 9  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
4 pgpfac.h . . . . . . . . . 10  |-  H  =  ( Gs  U )
54subggrp 17597 . . . . . . . . 9  |-  ( U  e.  (SubGrp `  G
)  ->  H  e.  Grp )
63, 5syl 17 . . . . . . . 8  |-  ( ph  ->  H  e.  Grp )
7 eqid 2622 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
87subgacs 17629 . . . . . . . 8  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
9 acsmre 16313 . . . . . . . 8  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
106, 8, 93syl 18 . . . . . . 7  |-  ( ph  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
11 pgpfac.x . . . . . . . 8  |-  ( ph  ->  X  e.  U )
124subgbas 17598 . . . . . . . . 9  |-  ( U  e.  (SubGrp `  G
)  ->  U  =  ( Base `  H )
)
133, 12syl 17 . . . . . . . 8  |-  ( ph  ->  U  =  ( Base `  H ) )
1411, 13eleqtrd 2703 . . . . . . 7  |-  ( ph  ->  X  e.  ( Base `  H ) )
15 pgpfac.k . . . . . . . 8  |-  K  =  (mrCls `  (SubGrp `  H
) )
1615mrcsncl 16272 . . . . . . 7  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  X  e.  ( Base `  H ) )  -> 
( K `  { X } )  e.  (SubGrp `  H ) )
1710, 14, 16syl2anc 693 . . . . . 6  |-  ( ph  ->  ( K `  { X } )  e.  (SubGrp `  H ) )
184subsubg 17617 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  ( ( K `  { X } )  e.  (SubGrp `  H )  <->  ( ( K `  { X } )  e.  (SubGrp `  G )  /\  ( K `  { X } )  C_  U
) ) )
193, 18syl 17 . . . . . 6  |-  ( ph  ->  ( ( K `  { X } )  e.  (SubGrp `  H )  <->  ( ( K `  { X } )  e.  (SubGrp `  G )  /\  ( K `  { X } )  C_  U
) ) )
2017, 19mpbid 222 . . . . 5  |-  ( ph  ->  ( ( K `  { X } )  e.  (SubGrp `  G )  /\  ( K `  { X } )  C_  U
) )
2120simpld 475 . . . 4  |-  ( ph  ->  ( K `  { X } )  e.  (SubGrp `  G ) )
224oveq1i 6660 . . . . . . 7  |-  ( Hs  ( K `  { X } ) )  =  ( ( Gs  U )s  ( K `  { X } ) )
2320simprd 479 . . . . . . . 8  |-  ( ph  ->  ( K `  { X } )  C_  U
)
24 ressabs 15939 . . . . . . . 8  |-  ( ( U  e.  (SubGrp `  G )  /\  ( K `  { X } )  C_  U
)  ->  ( ( Gs  U )s  ( K `  { X } ) )  =  ( Gs  ( K `
 { X }
) ) )
253, 23, 24syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( Gs  U )s  ( K `  { X } ) )  =  ( Gs  ( K `  { X } ) ) )
2622, 25syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( Hs  ( K `  { X } ) )  =  ( Gs  ( K `
 { X }
) ) )
277, 15cycsubgcyg2 18303 . . . . . . 7  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( Hs  ( K `  { X } ) )  e. CycGrp )
286, 14, 27syl2anc 693 . . . . . 6  |-  ( ph  ->  ( Hs  ( K `  { X } ) )  e. CycGrp )
2926, 28eqeltrrd 2702 . . . . 5  |-  ( ph  ->  ( Gs  ( K `  { X } ) )  e. CycGrp )
30 pgpfac.p . . . . . . 7  |-  ( ph  ->  P pGrp  G )
31 pgpprm 18008 . . . . . . 7  |-  ( P pGrp 
G  ->  P  e.  Prime )
3230, 31syl 17 . . . . . 6  |-  ( ph  ->  P  e.  Prime )
33 subgpgp 18012 . . . . . . 7  |-  ( ( P pGrp  G  /\  ( K `  { X } )  e.  (SubGrp `  G ) )  ->  P pGrp  ( Gs  ( K `  { X } ) ) )
3430, 21, 33syl2anc 693 . . . . . 6  |-  ( ph  ->  P pGrp  ( Gs  ( K `
 { X }
) ) )
35 brelrng 5355 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( Gs  ( K `  { X } ) )  e. CycGrp  /\  P pGrp  ( Gs  ( K `  { X } ) ) )  ->  ( Gs  ( K `
 { X }
) )  e.  ran pGrp  )
3632, 29, 34, 35syl3anc 1326 . . . . 5  |-  ( ph  ->  ( Gs  ( K `  { X } ) )  e.  ran pGrp  )
3729, 36elind 3798 . . . 4  |-  ( ph  ->  ( Gs  ( K `  { X } ) )  e.  (CycGrp  i^i  ran pGrp  ) )
38 oveq2 6658 . . . . . 6  |-  ( r  =  ( K `  { X } )  -> 
( Gs  r )  =  ( Gs  ( K `  { X } ) ) )
3938eleq1d 2686 . . . . 5  |-  ( r  =  ( K `  { X } )  -> 
( ( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <-> 
( Gs  ( K `  { X } ) )  e.  (CycGrp  i^i  ran pGrp  ) ) )
40 pgpfac.c . . . . 5  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
4139, 40elrab2 3366 . . . 4  |-  ( ( K `  { X } )  e.  C  <->  ( ( K `  { X } )  e.  (SubGrp `  G )  /\  ( Gs  ( K `  { X } ) )  e.  (CycGrp  i^i  ran pGrp  ) ) )
4221, 37, 41sylanbrc 698 . . 3  |-  ( ph  ->  ( K `  { X } )  e.  C
)
431, 2, 42cats1cld 13600 . 2  |-  ( ph  ->  T  e. Word  C )
44 wrdf 13310 . . . . 5  |-  ( T  e. Word  C  ->  T : ( 0..^ (
# `  T )
) --> C )
4543, 44syl 17 . . . 4  |-  ( ph  ->  T : ( 0..^ ( # `  T
) ) --> C )
46 ssrab2 3687 . . . . 5  |-  { r  e.  (SubGrp `  G
)  |  ( Gs  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  (SubGrp `  G )
4740, 46eqsstri 3635 . . . 4  |-  C  C_  (SubGrp `  G )
48 fss 6056 . . . 4  |-  ( ( T : ( 0..^ ( # `  T
) ) --> C  /\  C  C_  (SubGrp `  G
) )  ->  T : ( 0..^ (
# `  T )
) --> (SubGrp `  G )
)
4945, 47, 48sylancl 694 . . 3  |-  ( ph  ->  T : ( 0..^ ( # `  T
) ) --> (SubGrp `  G ) )
50 fzodisj 12502 . . . 4  |-  ( ( 0..^ ( # `  S
) )  i^i  (
( # `  S )..^ ( ( # `  S
)  +  1 ) ) )  =  (/)
51 lencl 13324 . . . . . . . 8  |-  ( S  e. Word  C  ->  ( # `
 S )  e. 
NN0 )
522, 51syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  S
)  e.  NN0 )
5352nn0zd 11480 . . . . . 6  |-  ( ph  ->  ( # `  S
)  e.  ZZ )
54 fzosn 12538 . . . . . 6  |-  ( (
# `  S )  e.  ZZ  ->  ( ( # `
 S )..^ ( ( # `  S
)  +  1 ) )  =  { (
# `  S ) } )
5553, 54syl 17 . . . . 5  |-  ( ph  ->  ( ( # `  S
)..^ ( ( # `  S )  +  1 ) )  =  {
( # `  S ) } )
5655ineq2d 3814 . . . 4  |-  ( ph  ->  ( ( 0..^ (
# `  S )
)  i^i  ( ( # `
 S )..^ ( ( # `  S
)  +  1 ) ) )  =  ( ( 0..^ ( # `  S ) )  i^i 
{ ( # `  S
) } ) )
5750, 56syl5reqr 2671 . . 3  |-  ( ph  ->  ( ( 0..^ (
# `  S )
)  i^i  { ( # `
 S ) } )  =  (/) )
581fveq2i 6194 . . . . . . 7  |-  ( # `  T )  =  (
# `  ( S ++  <" ( K `  { X } ) "> ) )
5942s1cld 13383 . . . . . . . 8  |-  ( ph  ->  <" ( K `
 { X }
) ">  e. Word  C )
60 ccatlen 13360 . . . . . . . 8  |-  ( ( S  e. Word  C  /\  <" ( K `  { X } ) ">  e. Word  C )  ->  ( # `  ( S ++  <" ( K `
 { X }
) "> )
)  =  ( (
# `  S )  +  ( # `  <" ( K `  { X } ) "> ) ) )
612, 59, 60syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( # `  ( S ++  <" ( K `
 { X }
) "> )
)  =  ( (
# `  S )  +  ( # `  <" ( K `  { X } ) "> ) ) )
6258, 61syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( # `  T
)  =  ( (
# `  S )  +  ( # `  <" ( K `  { X } ) "> ) ) )
63 s1len 13385 . . . . . . 7  |-  ( # `  <" ( K `
 { X }
) "> )  =  1
6463oveq2i 6661 . . . . . 6  |-  ( (
# `  S )  +  ( # `  <" ( K `  { X } ) "> ) )  =  ( ( # `  S
)  +  1 )
6562, 64syl6eq 2672 . . . . 5  |-  ( ph  ->  ( # `  T
)  =  ( (
# `  S )  +  1 ) )
6665oveq2d 6666 . . . 4  |-  ( ph  ->  ( 0..^ ( # `  T ) )  =  ( 0..^ ( (
# `  S )  +  1 ) ) )
67 nn0uz 11722 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
6852, 67syl6eleq 2711 . . . . 5  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= ` 
0 ) )
69 fzosplitsn 12576 . . . . 5  |-  ( (
# `  S )  e.  ( ZZ>= `  0 )  ->  ( 0..^ ( (
# `  S )  +  1 ) )  =  ( ( 0..^ ( # `  S
) )  u.  {
( # `  S ) } ) )
7068, 69syl 17 . . . 4  |-  ( ph  ->  ( 0..^ ( (
# `  S )  +  1 ) )  =  ( ( 0..^ ( # `  S
) )  u.  {
( # `  S ) } ) )
7166, 70eqtrd 2656 . . 3  |-  ( ph  ->  ( 0..^ ( # `  T ) )  =  ( ( 0..^ (
# `  S )
)  u.  { (
# `  S ) } ) )
72 eqid 2622 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
73 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
74 pgpfac.4 . . . 4  |-  ( ph  ->  G dom DProd  S )
75 cats1un 13475 . . . . . . . 8  |-  ( ( S  e. Word  C  /\  ( K `  { X } )  e.  C
)  ->  ( S ++  <" ( K `  { X } ) "> )  =  ( S  u.  { <. (
# `  S ) ,  ( K `  { X } ) >. } ) )
762, 42, 75syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( S ++  <" ( K `  { X } ) "> )  =  ( S  u.  { <. ( # `  S
) ,  ( K `
 { X }
) >. } ) )
771, 76syl5eq 2668 . . . . . 6  |-  ( ph  ->  T  =  ( S  u.  { <. ( # `
 S ) ,  ( K `  { X } ) >. } ) )
7877reseq1d 5395 . . . . 5  |-  ( ph  ->  ( T  |`  (
0..^ ( # `  S
) ) )  =  ( ( S  u.  {
<. ( # `  S
) ,  ( K `
 { X }
) >. } )  |`  ( 0..^ ( # `  S
) ) ) )
79 wrdf 13310 . . . . . . 7  |-  ( S  e. Word  C  ->  S : ( 0..^ (
# `  S )
) --> C )
80 ffn 6045 . . . . . . 7  |-  ( S : ( 0..^ (
# `  S )
) --> C  ->  S  Fn  ( 0..^ ( # `  S ) ) )
812, 79, 803syl 18 . . . . . 6  |-  ( ph  ->  S  Fn  ( 0..^ ( # `  S
) ) )
82 fzonel 12483 . . . . . 6  |-  -.  ( # `
 S )  e.  ( 0..^ ( # `  S ) )
83 fsnunres 6454 . . . . . 6  |-  ( ( S  Fn  ( 0..^ ( # `  S
) )  /\  -.  ( # `  S )  e.  ( 0..^ (
# `  S )
) )  ->  (
( S  u.  { <. ( # `  S
) ,  ( K `
 { X }
) >. } )  |`  ( 0..^ ( # `  S
) ) )  =  S )
8481, 82, 83sylancl 694 . . . . 5  |-  ( ph  ->  ( ( S  u.  {
<. ( # `  S
) ,  ( K `
 { X }
) >. } )  |`  ( 0..^ ( # `  S
) ) )  =  S )
8578, 84eqtrd 2656 . . . 4  |-  ( ph  ->  ( T  |`  (
0..^ ( # `  S
) ) )  =  S )
8674, 85breqtrrd 4681 . . 3  |-  ( ph  ->  G dom DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )
87 fvex 6201 . . . . . 6  |-  ( # `  S )  e.  _V
88 dprdsn 18435 . . . . . 6  |-  ( ( ( # `  S
)  e.  _V  /\  ( K `  { X } )  e.  (SubGrp `  G ) )  -> 
( G dom DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. }  /\  ( G DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. } )  =  ( K `  { X } ) ) )
8987, 21, 88sylancr 695 . . . . 5  |-  ( ph  ->  ( G dom DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. }  /\  ( G DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. } )  =  ( K `  { X } ) ) )
9089simpld 475 . . . 4  |-  ( ph  ->  G dom DProd  { <. ( # `
 S ) ,  ( K `  { X } ) >. } )
91 ffn 6045 . . . . . . 7  |-  ( T : ( 0..^ (
# `  T )
) --> C  ->  T  Fn  ( 0..^ ( # `  T ) ) )
9243, 44, 913syl 18 . . . . . 6  |-  ( ph  ->  T  Fn  ( 0..^ ( # `  T
) ) )
93 ssun2 3777 . . . . . . . 8  |-  { (
# `  S ) }  C_  ( ( 0..^ ( # `  S
) )  u.  {
( # `  S ) } )
9487snss 4316 . . . . . . . 8  |-  ( (
# `  S )  e.  ( ( 0..^ (
# `  S )
)  u.  { (
# `  S ) } )  <->  { ( # `
 S ) } 
C_  ( ( 0..^ ( # `  S
) )  u.  {
( # `  S ) } ) )
9593, 94mpbir 221 . . . . . . 7  |-  ( # `  S )  e.  ( ( 0..^ ( # `  S ) )  u. 
{ ( # `  S
) } )
9695, 71syl5eleqr 2708 . . . . . 6  |-  ( ph  ->  ( # `  S
)  e.  ( 0..^ ( # `  T
) ) )
97 fnressn 6425 . . . . . 6  |-  ( ( T  Fn  ( 0..^ ( # `  T
) )  /\  ( # `
 S )  e.  ( 0..^ ( # `  T ) ) )  ->  ( T  |`  { ( # `  S
) } )  =  { <. ( # `  S
) ,  ( T `
 ( # `  S
) ) >. } )
9892, 96, 97syl2anc 693 . . . . 5  |-  ( ph  ->  ( T  |`  { (
# `  S ) } )  =  { <. ( # `  S
) ,  ( T `
 ( # `  S
) ) >. } )
991fveq1i 6192 . . . . . . . . 9  |-  ( T `
 ( # `  S
) )  =  ( ( S ++  <" ( K `  { X } ) "> ) `  ( # `  S
) )
10052nn0cnd 11353 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  S
)  e.  CC )
101100addid2d 10237 . . . . . . . . . . 11  |-  ( ph  ->  ( 0  +  (
# `  S )
)  =  ( # `  S ) )
102101eqcomd 2628 . . . . . . . . . 10  |-  ( ph  ->  ( # `  S
)  =  ( 0  +  ( # `  S
) ) )
103102fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( ( S ++  <" ( K `  { X } ) "> ) `  ( # `  S
) )  =  ( ( S ++  <" ( K `  { X } ) "> ) `  ( 0  +  ( # `  S
) ) ) )
10499, 103syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( T `  ( # `
 S ) )  =  ( ( S ++ 
<" ( K `  { X } ) "> ) `  (
0  +  ( # `  S ) ) ) )
105 1nn 11031 . . . . . . . . . . . 12  |-  1  e.  NN
106105a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  NN )
10763, 106syl5eqel 2705 . . . . . . . . . 10  |-  ( ph  ->  ( # `  <" ( K `  { X } ) "> )  e.  NN )
108 lbfzo0 12507 . . . . . . . . . 10  |-  ( 0  e.  ( 0..^ (
# `  <" ( K `  { X } ) "> ) )  <->  ( # `  <" ( K `  { X } ) "> )  e.  NN )
109107, 108sylibr 224 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0..^ ( # `  <" ( K `  { X } ) "> ) ) )
110 ccatval3 13363 . . . . . . . . 9  |-  ( ( S  e. Word  C  /\  <" ( K `  { X } ) ">  e. Word  C  /\  0  e.  ( 0..^ ( # `  <" ( K `  { X } ) "> ) ) )  -> 
( ( S ++  <" ( K `  { X } ) "> ) `  ( 0  +  ( # `  S
) ) )  =  ( <" ( K `  { X } ) "> `  0 ) )
1112, 59, 109, 110syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( ( S ++  <" ( K `  { X } ) "> ) `  ( 0  +  ( # `  S
) ) )  =  ( <" ( K `  { X } ) "> `  0 ) )
112 fvex 6201 . . . . . . . . 9  |-  ( K `
 { X }
)  e.  _V
113 s1fv 13390 . . . . . . . . 9  |-  ( ( K `  { X } )  e.  _V  ->  ( <" ( K `  { X } ) "> `  0 )  =  ( K `  { X } ) )
114112, 113mp1i 13 . . . . . . . 8  |-  ( ph  ->  ( <" ( K `  { X } ) "> `  0 )  =  ( K `  { X } ) )
115104, 111, 1143eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( T `  ( # `
 S ) )  =  ( K `  { X } ) )
116115opeq2d 4409 . . . . . 6  |-  ( ph  -> 
<. ( # `  S
) ,  ( T `
 ( # `  S
) ) >.  =  <. (
# `  S ) ,  ( K `  { X } ) >.
)
117116sneqd 4189 . . . . 5  |-  ( ph  ->  { <. ( # `  S
) ,  ( T `
 ( # `  S
) ) >. }  =  { <. ( # `  S
) ,  ( K `
 { X }
) >. } )
11898, 117eqtrd 2656 . . . 4  |-  ( ph  ->  ( T  |`  { (
# `  S ) } )  =  { <. ( # `  S
) ,  ( K `
 { X }
) >. } )
11990, 118breqtrrd 4681 . . 3  |-  ( ph  ->  G dom DProd  ( T  |` 
{ ( # `  S
) } ) )
120 pgpfac.g . . . 4  |-  ( ph  ->  G  e.  Abel )
121 dprdsubg 18423 . . . . 5  |-  ( G dom DProd  ( T  |`  ( 0..^ ( # `  S
) ) )  -> 
( G DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )  e.  (SubGrp `  G ) )
12286, 121syl 17 . . . 4  |-  ( ph  ->  ( G DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )  e.  (SubGrp `  G ) )
123 dprdsubg 18423 . . . . 5  |-  ( G dom DProd  ( T  |`  { ( # `  S
) } )  -> 
( G DProd  ( T  |` 
{ ( # `  S
) } ) )  e.  (SubGrp `  G
) )
124119, 123syl 17 . . . 4  |-  ( ph  ->  ( G DProd  ( T  |`  { ( # `  S
) } ) )  e.  (SubGrp `  G
) )
12572, 120, 122, 124ablcntzd 18260 . . 3  |-  ( ph  ->  ( G DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )  C_  ( (Cntz `  G ) `  ( G DProd  ( T  |`  { (
# `  S ) } ) ) ) )
126 pgpfac.i . . . 4  |-  ( ph  ->  ( ( K `  { X } )  i^i 
W )  =  {  .0.  } )
12785oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )  =  ( G DProd 
S ) )
128 pgpfac.5 . . . . . . 7  |-  ( ph  ->  ( G DProd  S )  =  W )
129127, 128eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( G DProd  ( T  |`  ( 0..^ ( # `  S ) ) ) )  =  W )
130118oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( G DProd  ( T  |`  { ( # `  S
) } ) )  =  ( G DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. } ) )
13189simprd 479 . . . . . . 7  |-  ( ph  ->  ( G DProd  { <. (
# `  S ) ,  ( K `  { X } ) >. } )  =  ( K `  { X } ) )
132130, 131eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( G DProd  ( T  |`  { ( # `  S
) } ) )  =  ( K `  { X } ) )
133129, 132ineq12d 3815 . . . . 5  |-  ( ph  ->  ( ( G DProd  ( T  |`  ( 0..^ (
# `  S )
) ) )  i^i  ( G DProd  ( T  |`  { ( # `  S
) } ) ) )  =  ( W  i^i  ( K `  { X } ) ) )
134 incom 3805 . . . . 5  |-  ( W  i^i  ( K `  { X } ) )  =  ( ( K `
 { X }
)  i^i  W )
135133, 134syl6eq 2672 . . . 4  |-  ( ph  ->  ( ( G DProd  ( T  |`  ( 0..^ (
# `  S )
) ) )  i^i  ( G DProd  ( T  |`  { ( # `  S
) } ) ) )  =  ( ( K `  { X } )  i^i  W
) )
1364, 73subg0 17600 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
1373, 136syl 17 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  =  ( 0g
`  H ) )
138 pgpfac.0 . . . . . 6  |-  .0.  =  ( 0g `  H )
139137, 138syl6eqr 2674 . . . . 5  |-  ( ph  ->  ( 0g `  G
)  =  .0.  )
140139sneqd 4189 . . . 4  |-  ( ph  ->  { ( 0g `  G ) }  =  {  .0.  } )
141126, 135, 1403eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( G DProd  ( T  |`  ( 0..^ (
# `  S )
) ) )  i^i  ( G DProd  ( T  |`  { ( # `  S
) } ) ) )  =  { ( 0g `  G ) } )
14249, 57, 71, 72, 73, 86, 119, 125, 141dmdprdsplit2 18445 . 2  |-  ( ph  ->  G dom DProd  T )
143 eqid 2622 . . . . 5  |-  ( LSSum `  G )  =  (
LSSum `  G )
14449, 57, 71, 143, 142dprdsplit 18447 . . . 4  |-  ( ph  ->  ( G DProd  T )  =  ( ( G DProd 
( T  |`  (
0..^ ( # `  S
) ) ) ) ( LSSum `  G )
( G DProd  ( T  |` 
{ ( # `  S
) } ) ) ) )
145129, 132oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( G DProd  ( T  |`  ( 0..^ (
# `  S )
) ) ) (
LSSum `  G ) ( G DProd  ( T  |`  { ( # `  S
) } ) ) )  =  ( W ( LSSum `  G )
( K `  { X } ) ) )
146129, 122eqeltrrd 2702 . . . . 5  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
147143lsmcom 18261 . . . . 5  |-  ( ( G  e.  Abel  /\  W  e.  (SubGrp `  G )  /\  ( K `  { X } )  e.  (SubGrp `  G ) )  -> 
( W ( LSSum `  G ) ( K `
 { X }
) )  =  ( ( K `  { X } ) ( LSSum `  G ) W ) )
148120, 146, 21, 147syl3anc 1326 . . . 4  |-  ( ph  ->  ( W ( LSSum `  G ) ( K `
 { X }
) )  =  ( ( K `  { X } ) ( LSSum `  G ) W ) )
149144, 145, 1483eqtrd 2660 . . 3  |-  ( ph  ->  ( G DProd  T )  =  ( ( K `
 { X }
) ( LSSum `  G
) W ) )
150 pgpfac.w . . . . . 6  |-  ( ph  ->  W  e.  (SubGrp `  H ) )
1517subgss 17595 . . . . . 6  |-  ( W  e.  (SubGrp `  H
)  ->  W  C_  ( Base `  H ) )
152150, 151syl 17 . . . . 5  |-  ( ph  ->  W  C_  ( Base `  H ) )
153152, 13sseqtr4d 3642 . . . 4  |-  ( ph  ->  W  C_  U )
154 pgpfac.l . . . . 5  |-  .(+)  =  (
LSSum `  H )
1554, 143, 154subglsm 18086 . . . 4  |-  ( ( U  e.  (SubGrp `  G )  /\  ( K `  { X } )  C_  U  /\  W  C_  U )  ->  ( ( K `
 { X }
) ( LSSum `  G
) W )  =  ( ( K `  { X } )  .(+)  W ) )
1563, 23, 153, 155syl3anc 1326 . . 3  |-  ( ph  ->  ( ( K `  { X } ) (
LSSum `  G ) W )  =  ( ( K `  { X } )  .(+)  W ) )
157 pgpfac.s . . 3  |-  ( ph  ->  ( ( K `  { X } )  .(+)  W )  =  U )
158149, 156, 1573eqtrd 2660 . 2  |-  ( ph  ->  ( G DProd  T )  =  U )
159 breq2 4657 . . . 4  |-  ( s  =  T  ->  ( G dom DProd  s  <->  G dom DProd  T ) )
160 oveq2 6658 . . . . 5  |-  ( s  =  T  ->  ( G DProd  s )  =  ( G DProd  T ) )
161160eqeq1d 2624 . . . 4  |-  ( s  =  T  ->  (
( G DProd  s )  =  U  <->  ( G DProd  T
)  =  U ) )
162159, 161anbi12d 747 . . 3  |-  ( s  =  T  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  U )  <->  ( G dom DProd  T  /\  ( G DProd 
T )  =  U ) ) )
163162rspcev 3309 . 2  |-  ( ( T  e. Word  C  /\  ( G dom DProd  T  /\  ( G DProd  T )  =  U ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
16443, 142, 158, 163syl12anc 1324 1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   Primecprime 15385   Basecbs 15857   ↾s cress 15858   0gc0g 16100  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245   Grpcgrp 17422  SubGrpcsubg 17588  Cntzccntz 17748   odcod 17944  gExcgex 17945   pGrp cpgp 17946   LSSumclsm 18049   Abelcabl 18194  CycGrpccyg 18279   DProd cdprd 18392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-gim 17701  df-cntz 17750  df-oppg 17776  df-od 17948  df-pgp 17950  df-lsm 18051  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394
This theorem is referenced by:  pgpfaclem2  18481
  Copyright terms: Public domain W3C validator