MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtrclfv Structured version   Visualization version   Unicode version

Theorem brtrclfv 13743
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brtrclfv  |-  ( R  e.  V  ->  ( A ( t+ `  R ) B  <->  A. r ( ( R 
C_  r  /\  (
r  o.  r ) 
C_  r )  ->  A r B ) ) )
Distinct variable groups:    A, r    B, r    R, r
Allowed substitution hint:    V( r)

Proof of Theorem brtrclfv
StepHypRef Expression
1 trclfv 13741 . . 3  |-  ( R  e.  V  ->  (
t+ `  R
)  =  |^| { r  |  ( R  C_  r  /\  ( r  o.  r )  C_  r
) } )
21breqd 4664 . 2  |-  ( R  e.  V  ->  ( A ( t+ `  R ) B  <-> 
A |^| { r  |  ( R  C_  r  /\  ( r  o.  r
)  C_  r ) } B ) )
3 brintclab 13742 . . 3  |-  ( A
|^| { r  |  ( R  C_  r  /\  ( r  o.  r
)  C_  r ) } B  <->  A. r ( ( R  C_  r  /\  ( r  o.  r
)  C_  r )  -> 
<. A ,  B >.  e.  r ) )
4 df-br 4654 . . . . 5  |-  ( A r B  <->  <. A ,  B >.  e.  r )
54imbi2i 326 . . . 4  |-  ( ( ( R  C_  r  /\  ( r  o.  r
)  C_  r )  ->  A r B )  <-> 
( ( R  C_  r  /\  ( r  o.  r )  C_  r
)  ->  <. A ,  B >.  e.  r ) )
65albii 1747 . . 3  |-  ( A. r ( ( R 
C_  r  /\  (
r  o.  r ) 
C_  r )  ->  A r B )  <->  A. r ( ( R 
C_  r  /\  (
r  o.  r ) 
C_  r )  ->  <. A ,  B >.  e.  r ) )
73, 6bitr4i 267 . 2  |-  ( A
|^| { r  |  ( R  C_  r  /\  ( r  o.  r
)  C_  r ) } B  <->  A. r ( ( R  C_  r  /\  ( r  o.  r
)  C_  r )  ->  A r B ) )
82, 7syl6bb 276 1  |-  ( R  e.  V  ->  ( A ( t+ `  R ) B  <->  A. r ( ( R 
C_  r  /\  (
r  o.  r ) 
C_  r )  ->  A r B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608    C_ wss 3574   <.cop 4183   |^|cint 4475   class class class wbr 4653    o. ccom 5118   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by:  brcnvtrclfv  13744  brtrclfvcnv  13745  trclfvcotr  13750
  Copyright terms: Public domain W3C validator