MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfv Structured version   Visualization version   Unicode version

Theorem trclfv 13741
Description: The transitive closure of a relation. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclfv  |-  ( R  e.  V  ->  (
t+ `  R
)  =  |^| { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) } )
Distinct variable group:    x, R
Allowed substitution hint:    V( x)

Proof of Theorem trclfv
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( R  e.  V  ->  R  e.  _V )
2 trclexlem 13733 . . . 4  |-  ( R  e.  _V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  _V )
3 trclubg 13740 . . . 4  |-  ( R  e.  _V  ->  |^| { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) }  C_  ( R  u.  ( dom  R  X.  ran  R ) ) )
42, 3ssexd 4805 . . 3  |-  ( R  e.  _V  ->  |^| { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) }  e.  _V )
51, 4jccir 562 . 2  |-  ( R  e.  V  ->  ( R  e.  _V  /\  |^| { x  |  ( R 
C_  x  /\  (
x  o.  x ) 
C_  x ) }  e.  _V ) )
6 trcleq1 13728 . . 3  |-  ( r  =  R  ->  |^| { x  |  ( r  C_  x  /\  ( x  o.  x )  C_  x
) }  =  |^| { x  |  ( R 
C_  x  /\  (
x  o.  x ) 
C_  x ) } )
7 df-trcl 13726 . . 3  |-  t+  =  ( r  e.  _V  |->  |^| { x  |  ( r  C_  x  /\  ( x  o.  x
)  C_  x ) } )
86, 7fvmptg 6280 . 2  |-  ( ( R  e.  _V  /\  |^|
{ x  |  ( R  C_  x  /\  ( x  o.  x
)  C_  x ) }  e.  _V )  ->  ( t+ `  R )  =  |^| { x  |  ( R 
C_  x  /\  (
x  o.  x ) 
C_  x ) } )
95, 8syl 17 1  |-  ( R  e.  V  ->  (
t+ `  R
)  =  |^| { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    u. cun 3572    C_ wss 3574   |^|cint 4475    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by:  brtrclfv  13743  trclfvss  13747  trclfvub  13748  trclfvlb  13749  cotrtrclfv  13753  trclun  13755  brtrclfv2  38019
  Copyright terms: Public domain W3C validator