MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov12 Structured version   Visualization version   Unicode version

Theorem caov12 6862
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov12  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov12
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.2 . . . 4  |-  B  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 6831 . . 3  |-  ( A F B )  =  ( B F A )
54oveq1i 6660 . 2  |-  ( ( A F B ) F C )  =  ( ( B F A ) F C )
6 caov.3 . . 3  |-  C  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
81, 2, 6, 7caovass 6834 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
92, 1, 6, 7caovass 6834 . 2  |-  ( ( B F A ) F C )  =  ( B F ( A F C ) )
105, 8, 93eqtr3i 2652 1  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   _Vcvv 3200  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by:  caov31  6863  caov4  6865  caovmo  6871  distrnq  9783  ltaddnq  9796  ltexnq  9797  1idpr  9851  prlem934  9855  prlem936  9869  mulcmpblnrlem  9891  ltsosr  9915  0idsr  9918  1idsr  9919  recexsrlem  9924  mulgt0sr  9926  axmulass  9978
  Copyright terms: Public domain W3C validator