| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axunnd | Structured version Visualization version Unicode version | ||
| Description: A version of the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| axunnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axunndlem1 9417 |
. . . 4
| |
| 2 | nfnae 2318 |
. . . . . 6
| |
| 3 | nfnae 2318 |
. . . . . 6
| |
| 4 | 2, 3 | nfan 1828 |
. . . . 5
|
| 5 | nfnae 2318 |
. . . . . . 7
| |
| 6 | nfnae 2318 |
. . . . . . 7
| |
| 7 | 5, 6 | nfan 1828 |
. . . . . 6
|
| 8 | nfv 1843 |
. . . . . . . 8
| |
| 9 | nfcvf 2788 |
. . . . . . . . . . 11
| |
| 10 | 9 | adantr 481 |
. . . . . . . . . 10
|
| 11 | nfcvd 2765 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | nfeld 2773 |
. . . . . . . . 9
|
| 13 | nfcvf 2788 |
. . . . . . . . . . 11
| |
| 14 | 13 | adantl 482 |
. . . . . . . . . 10
|
| 15 | 11, 14 | nfeld 2773 |
. . . . . . . . 9
|
| 16 | 12, 15 | nfand 1826 |
. . . . . . . 8
|
| 17 | 8, 16 | nfexd 2167 |
. . . . . . 7
|
| 18 | 17, 12 | nfimd 1823 |
. . . . . 6
|
| 19 | 7, 18 | nfald 2165 |
. . . . 5
|
| 20 | nfcvd 2765 |
. . . . . . . . 9
| |
| 21 | nfcvf2 2789 |
. . . . . . . . . 10
| |
| 22 | 21 | adantr 481 |
. . . . . . . . 9
|
| 23 | 20, 22 | nfeqd 2772 |
. . . . . . . 8
|
| 24 | 7, 23 | nfan1 2068 |
. . . . . . 7
|
| 25 | elequ2 2004 |
. . . . . . . . . . . 12
| |
| 26 | elequ1 1997 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | anbi12d 747 |
. . . . . . . . . . 11
|
| 28 | 27 | a1i 11 |
. . . . . . . . . 10
|
| 29 | 4, 16, 28 | cbvexd 2278 |
. . . . . . . . 9
|
| 30 | 29 | adantr 481 |
. . . . . . . 8
|
| 31 | 25 | adantl 482 |
. . . . . . . 8
|
| 32 | 30, 31 | imbi12d 334 |
. . . . . . 7
|
| 33 | 24, 32 | albid 2090 |
. . . . . 6
|
| 34 | 33 | ex 450 |
. . . . 5
|
| 35 | 4, 19, 34 | cbvexd 2278 |
. . . 4
|
| 36 | 1, 35 | mpbii 223 |
. . 3
|
| 37 | 36 | ex 450 |
. 2
|
| 38 | nfae 2316 |
. . . 4
| |
| 39 | nfae 2316 |
. . . . . 6
| |
| 40 | elirrv 8504 |
. . . . . . . . 9
| |
| 41 | elequ2 2004 |
. . . . . . . . 9
| |
| 42 | 40, 41 | mtbiri 317 |
. . . . . . . 8
|
| 43 | 42 | intnanrd 963 |
. . . . . . 7
|
| 44 | 43 | sps 2055 |
. . . . . 6
|
| 45 | 39, 44 | nexd 2089 |
. . . . 5
|
| 46 | 45 | pm2.21d 118 |
. . . 4
|
| 47 | 38, 46 | alrimi 2082 |
. . 3
|
| 48 | 19.8a 2052 |
. . 3
| |
| 49 | 47, 48 | syl 17 |
. 2
|
| 50 | nfae 2316 |
. . . 4
| |
| 51 | nfae 2316 |
. . . . . 6
| |
| 52 | elirrv 8504 |
. . . . . . . . 9
| |
| 53 | elequ1 1997 |
. . . . . . . . 9
| |
| 54 | 52, 53 | mtbiri 317 |
. . . . . . . 8
|
| 55 | 54 | intnand 962 |
. . . . . . 7
|
| 56 | 55 | sps 2055 |
. . . . . 6
|
| 57 | 51, 56 | nexd 2089 |
. . . . 5
|
| 58 | 57 | pm2.21d 118 |
. . . 4
|
| 59 | 50, 58 | alrimi 2082 |
. . 3
|
| 60 | 59, 48 | syl 17 |
. 2
|
| 61 | 37, 49, 60 | pm2.61ii 177 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 |
| This theorem is referenced by: zfcndun 9437 axunprim 31580 |
| Copyright terms: Public domain | W3C validator |