MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviin Structured version   Visualization version   Unicode version

Theorem cbviin 4558
Description: Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
cbviun.1  |-  F/_ y B
cbviun.2  |-  F/_ x C
cbviun.3  |-  ( x  =  y  ->  B  =  C )
Assertion
Ref Expression
cbviin  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Distinct variable groups:    y, A    x, A
Allowed substitution hints:    B( x, y)    C( x, y)

Proof of Theorem cbviin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5  |-  F/_ y B
21nfcri 2758 . . . 4  |-  F/ y  z  e.  B
3 cbviun.2 . . . . 5  |-  F/_ x C
43nfcri 2758 . . . 4  |-  F/ x  z  e.  C
5 cbviun.3 . . . . 5  |-  ( x  =  y  ->  B  =  C )
65eleq2d 2687 . . . 4  |-  ( x  =  y  ->  (
z  e.  B  <->  z  e.  C ) )
72, 4, 6cbvral 3167 . . 3  |-  ( A. x  e.  A  z  e.  B  <->  A. y  e.  A  z  e.  C )
87abbii 2739 . 2  |-  { z  |  A. x  e.  A  z  e.  B }  =  { z  |  A. y  e.  A  z  e.  C }
9 df-iin 4523 . 2  |-  |^|_ x  e.  A  B  =  { z  |  A. x  e.  A  z  e.  B }
10 df-iin 4523 . 2  |-  |^|_ y  e.  A  C  =  { z  |  A. y  e.  A  z  e.  C }
118, 9, 103eqtr4i 2654 1  |-  |^|_ x  e.  A  B  =  |^|_ y  e.  A  C
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751   A.wral 2912   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-iin 4523
This theorem is referenced by:  cbviinv  4560  elrfirn2  37259  fnlimfvre  39906  smflimlem6  40984  smflim  40985  smflim2  41012  smfsup  41020  smfinflem  41023  smfinf  41024  smflimsup  41034  smfliminf  41037
  Copyright terms: Public domain W3C validator