Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   Unicode version

Theorem smfliminf 41037
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n  |-  F/_ m F
smfliminf.x  |-  F/_ x F
smfliminf.m  |-  ( ph  ->  M  e.  ZZ )
smfliminf.z  |-  Z  =  ( ZZ>= `  M )
smfliminf.s  |-  ( ph  ->  S  e. SAlg )
smfliminf.f  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
smfliminf.d  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
smfliminf.g  |-  G  =  ( x  e.  D  |->  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
Assertion
Ref Expression
smfliminf  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Distinct variable groups:    n, F    m, Z, n, x
Allowed substitution hints:    ph( x, m, n)    D( x, m, n)    S( x, m, n)    F( x, m)    G( x, m, n)    M( x, m, n)

Proof of Theorem smfliminf
Dummy variables  k 
y  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 smfliminf.z . 2  |-  Z  =  ( ZZ>= `  M )
3 smfliminf.s . 2  |-  ( ph  ->  S  e. SAlg )
4 smfliminf.f . 2  |-  ( ph  ->  F : Z --> (SMblFn `  S ) )
5 smfliminf.d . . 3  |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
6 nfcv 2764 . . . . 5  |-  F/_ x Z
7 nfcv 2764 . . . . . 6  |-  F/_ x
( ZZ>= `  n )
8 smfliminf.x . . . . . . . 8  |-  F/_ x F
9 nfcv 2764 . . . . . . . 8  |-  F/_ x m
108, 9nffv 6198 . . . . . . 7  |-  F/_ x
( F `  m
)
1110nfdm 5367 . . . . . 6  |-  F/_ x dom  ( F `  m
)
127, 11nfiin 4549 . . . . 5  |-  F/_ x |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )
136, 12nfiun 4548 . . . 4  |-  F/_ x U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )
14 nfcv 2764 . . . . . 6  |-  F/_ x
( ZZ>= `  i )
15 nfcv 2764 . . . . . . . 8  |-  F/_ x
k
168, 15nffv 6198 . . . . . . 7  |-  F/_ x
( F `  k
)
1716nfdm 5367 . . . . . 6  |-  F/_ x dom  ( F `  k
)
1814, 17nfiin 4549 . . . . 5  |-  F/_ x |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k )
196, 18nfiun 4548 . . . 4  |-  F/_ x U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k )
20 nfcv 2764 . . . . 5  |-  F/_ i |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )
21 nfcv 2764 . . . . 5  |-  F/_ n |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k )
22 fveq2 6191 . . . . . . 7  |-  ( n  =  i  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  i )
)
2322iineq1d 39267 . . . . . 6  |-  ( n  =  i  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ m  e.  ( ZZ>= `  i ) dom  ( F `  m
) )
24 nfcv 2764 . . . . . . . . 9  |-  F/_ k
( F `  m
)
2524nfdm 5367 . . . . . . . 8  |-  F/_ k dom  ( F `  m
)
26 smfliminf.n . . . . . . . . . 10  |-  F/_ m F
27 nfcv 2764 . . . . . . . . . 10  |-  F/_ m
k
2826, 27nffv 6198 . . . . . . . . 9  |-  F/_ m
( F `  k
)
2928nfdm 5367 . . . . . . . 8  |-  F/_ m dom  ( F `  k
)
30 fveq2 6191 . . . . . . . . 9  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
3130dmeqd 5326 . . . . . . . 8  |-  ( m  =  k  ->  dom  ( F `  m )  =  dom  ( F `
 k ) )
3225, 29, 31cbviin 4558 . . . . . . 7  |-  |^|_ m  e.  ( ZZ>= `  i ) dom  ( F `  m
)  =  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
)
3332a1i 11 . . . . . 6  |-  ( n  =  i  ->  |^|_ m  e.  ( ZZ>= `  i ) dom  ( F `  m
)  =  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
) )
3423, 33eqtrd 2656 . . . . 5  |-  ( n  =  i  ->  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
) )
3520, 21, 34cbviun 4557 . . . 4  |-  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  =  U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
)
3613, 19, 35rabeqif 3191 . . 3  |-  { x  e.  U_ n  e.  Z  |^|_
m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )  e.  RR }  =  { x  e.  U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
)  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
37 nfcv 2764 . . . 4  |-  F/_ y U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k )
38 nfv 1843 . . . 4  |-  F/ y (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )  e.  RR
39 nfcv 2764 . . . . . 6  |-  F/_ xliminf
40 nfcv 2764 . . . . . . . 8  |-  F/_ x
y
4116, 40nffv 6198 . . . . . . 7  |-  F/_ x
( ( F `  k ) `  y
)
426, 41nfmpt 4746 . . . . . 6  |-  F/_ x
( k  e.  Z  |->  ( ( F `  k ) `  y
) )
4339, 42nffv 6198 . . . . 5  |-  F/_ x
(liminf `  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) )
44 nfcv 2764 . . . . 5  |-  F/_ x RR
4543, 44nfel 2777 . . . 4  |-  F/ x
(liminf `  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) )  e.  RR
46 nfv 1843 . . . . . . . 8  |-  F/ m  x  =  y
47 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  (
( F `  m
) `  x )  =  ( ( F `
 m ) `  y ) )
4847adantr 481 . . . . . . . 8  |-  ( ( x  =  y  /\  m  e.  Z )  ->  ( ( F `  m ) `  x
)  =  ( ( F `  m ) `
 y ) )
4946, 48mpteq2da 4743 . . . . . . 7  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  x )
)  =  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) ) )
50 nfcv 2764 . . . . . . . . 9  |-  F/_ k
( ( F `  m ) `  y
)
51 nfcv 2764 . . . . . . . . . 10  |-  F/_ m
y
5228, 51nffv 6198 . . . . . . . . 9  |-  F/_ m
( ( F `  k ) `  y
)
5330fveq1d 6193 . . . . . . . . 9  |-  ( m  =  k  ->  (
( F `  m
) `  y )  =  ( ( F `
 k ) `  y ) )
5450, 52, 53cbvmpt 4749 . . . . . . . 8  |-  ( m  e.  Z  |->  ( ( F `  m ) `
 y ) )  =  ( k  e.  Z  |->  ( ( F `
 k ) `  y ) )
5554a1i 11 . . . . . . 7  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  y )
)  =  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) )
5649, 55eqtrd 2656 . . . . . 6  |-  ( x  =  y  ->  (
m  e.  Z  |->  ( ( F `  m
) `  x )
)  =  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) )
5756fveq2d 6195 . . . . 5  |-  ( x  =  y  ->  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  =  (liminf `  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) ) )
5857eleq1d 2686 . . . 4  |-  ( x  =  y  ->  (
(liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )  e.  RR  <->  (liminf `  (
k  e.  Z  |->  ( ( F `  k
) `  y )
) )  e.  RR ) )
5919, 37, 38, 45, 58cbvrab 3198 . . 3  |-  { x  e.  U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k )  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )  e.  RR }  =  { y  e.  U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
)  |  (liminf `  ( k  e.  Z  |->  ( ( F `  k ) `  y
) ) )  e.  RR }
605, 36, 593eqtri 2648 . 2  |-  D  =  { y  e.  U_ i  e.  Z  |^|_ k  e.  ( ZZ>= `  i ) dom  ( F `  k
)  |  (liminf `  ( k  e.  Z  |->  ( ( F `  k ) `  y
) ) )  e.  RR }
61 smfliminf.g . . 3  |-  G  =  ( x  e.  D  |->  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) ) )
62 nfrab1 3122 . . . . 5  |-  F/_ x { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m
)  |  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) )  e.  RR }
635, 62nfcxfr 2762 . . . 4  |-  F/_ x D
64 nfcv 2764 . . . 4  |-  F/_ y D
65 nfcv 2764 . . . 4  |-  F/_ y
(liminf `  ( m  e.  Z  |->  ( ( F `  m ) `
 x ) ) )
6663, 64, 65, 43, 57cbvmptf 4748 . . 3  |-  ( x  e.  D  |->  (liminf `  ( m  e.  Z  |->  ( ( F `  m ) `  x
) ) ) )  =  ( y  e.  D  |->  (liminf `  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) ) )
6761, 66eqtri 2644 . 2  |-  G  =  ( y  e.  D  |->  (liminf `  ( k  e.  Z  |->  ( ( F `  k ) `
 y ) ) ) )
681, 2, 3, 4, 60, 67smfliminflem 41036 1  |-  ( ph  ->  G  e.  (SMblFn `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   F/_wnfc 2751   {crab 2916   U_ciun 4520   |^|_ciin 4521    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888   RRcr 9935   ZZcz 11377   ZZ>=cuz 11687  liminfclsi 39983  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-ceil 12594  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-liminf 39984  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smfliminfmpt  41038
  Copyright terms: Public domain W3C validator