MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval2 Structured version   Visualization version   Unicode version

Theorem cfval2 9082
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfval2  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^|_ x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  ( card `  x ) )
Distinct variable group:    w, A, x, z

Proof of Theorem cfval2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cfval 9069 . 2  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { y  |  E. x ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) } )
2 fvex 6201 . . . 4  |-  ( card `  x )  e.  _V
32dfiin2 4555 . . 3  |-  |^|_ x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  ( card `  x )  =  |^| { y  |  E. x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w } y  =  (
card `  x ) }
4 df-rex 2918 . . . . . 6  |-  ( E. x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w } y  =  ( card `  x
)  <->  E. x ( x  e.  { x  e. 
~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  /\  y  =  ( card `  x
) ) )
5 rabid 3116 . . . . . . . . 9  |-  ( x  e.  { x  e. 
~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  <->  ( x  e.  ~P A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) )
6 selpw 4165 . . . . . . . . . 10  |-  ( x  e.  ~P A  <->  x  C_  A
)
76anbi1i 731 . . . . . . . . 9  |-  ( ( x  e.  ~P A  /\  A. z  e.  A  E. w  e.  x  z  C_  w )  <->  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) )
85, 7bitri 264 . . . . . . . 8  |-  ( x  e.  { x  e. 
~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  <->  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) )
98anbi2ci 732 . . . . . . 7  |-  ( ( x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  /\  y  =  ( card `  x
) )  <->  ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) )
109exbii 1774 . . . . . 6  |-  ( E. x ( x  e. 
{ x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  /\  y  =  ( card `  x
) )  <->  E. x
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) )
114, 10bitri 264 . . . . 5  |-  ( E. x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w } y  =  ( card `  x
)  <->  E. x ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) )
1211abbii 2739 . . . 4  |-  { y  |  E. x  e. 
{ x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w } y  =  (
card `  x ) }  =  { y  |  E. x ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) }
1312inteqi 4479 . . 3  |-  |^| { y  |  E. x  e. 
{ x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w } y  =  (
card `  x ) }  =  |^| { y  |  E. x ( y  =  ( card `  x )  /\  (
x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) }
143, 13eqtr2i 2645 . 2  |-  |^| { y  |  E. x ( y  =  ( card `  x )  /\  (
x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) }  =  |^|_ x  e.  {
x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  ( card `  x )
151, 14syl6eq 2672 1  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^|_ x  e.  { x  e.  ~P A  |  A. z  e.  A  E. w  e.  x  z  C_  w }  ( card `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   ~Pcpw 4158   |^|cint 4475   |^|_ciin 4521   Oncon0 5723   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-cf 8767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator