MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfflb Structured version   Visualization version   Unicode version

Theorem cfflb 9081
Description: If there is a cofinal map from  B to  A, then  B is at least  ( cf `  A
). This theorem and cff1 9080 motivate the picture of  ( cf `  A
) as the greatest lower bound of the domain of cofinal maps into  A. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfflb  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  B ) )
Distinct variable groups:    A, f, w, z    B, f, w, z

Proof of Theorem cfflb
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 6053 . . . . . . 7  |-  ( f : B --> A  ->  ran  f  C_  A )
21adantr 481 . . . . . 6  |-  ( ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ran  f  C_  A )
3 ffn 6045 . . . . . . . . . . . 12  |-  ( f : B --> A  -> 
f  Fn  B )
4 fnfvelrn 6356 . . . . . . . . . . . 12  |-  ( ( f  Fn  B  /\  w  e.  B )  ->  ( f `  w
)  e.  ran  f
)
53, 4sylan 488 . . . . . . . . . . 11  |-  ( ( f : B --> A  /\  w  e.  B )  ->  ( f `  w
)  e.  ran  f
)
6 sseq2 3627 . . . . . . . . . . . 12  |-  ( s  =  ( f `  w )  ->  (
z  C_  s  <->  z  C_  ( f `  w
) ) )
76rspcev 3309 . . . . . . . . . . 11  |-  ( ( ( f `  w
)  e.  ran  f  /\  z  C_  ( f `
 w ) )  ->  E. s  e.  ran  f  z  C_  s )
85, 7sylan 488 . . . . . . . . . 10  |-  ( ( ( f : B --> A  /\  w  e.  B
)  /\  z  C_  ( f `  w
) )  ->  E. s  e.  ran  f  z  C_  s )
98exp31 630 . . . . . . . . 9  |-  ( f : B --> A  -> 
( w  e.  B  ->  ( z  C_  (
f `  w )  ->  E. s  e.  ran  f  z  C_  s ) ) )
109rexlimdv 3030 . . . . . . . 8  |-  ( f : B --> A  -> 
( E. w  e.  B  z  C_  (
f `  w )  ->  E. s  e.  ran  f  z  C_  s ) )
1110ralimdv 2963 . . . . . . 7  |-  ( f : B --> A  -> 
( A. z  e.  A  E. w  e.  B  z  C_  (
f `  w )  ->  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )
1211imp 445 . . . . . 6  |-  ( ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  A. z  e.  A  E. s  e.  ran  f  z  C_  s )
132, 12jca 554 . . . . 5  |-  ( ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z 
C_  s ) )
14 fvex 6201 . . . . . 6  |-  ( card `  ran  f )  e. 
_V
15 cfval 9069 . . . . . . . . . . 11  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } )
1615adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( cf `  A
)  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } )
17163ad2ant2 1083 . . . . . . . . 9  |-  ( ( x  =  ( card `  ran  f )  /\  ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  -> 
( cf `  A
)  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } )
18 vex 3203 . . . . . . . . . . . . . 14  |-  f  e. 
_V
1918rnex 7100 . . . . . . . . . . . . 13  |-  ran  f  e.  _V
20 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( y  =  ran  f  -> 
( card `  y )  =  ( card `  ran  f ) )
2120eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( y  =  ran  f  -> 
( x  =  (
card `  y )  <->  x  =  ( card `  ran  f ) ) )
22 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( y  =  ran  f  -> 
( y  C_  A  <->  ran  f  C_  A )
)
23 rexeq 3139 . . . . . . . . . . . . . . . 16  |-  ( y  =  ran  f  -> 
( E. s  e.  y  z  C_  s  <->  E. s  e.  ran  f 
z  C_  s )
)
2423ralbidv 2986 . . . . . . . . . . . . . . 15  |-  ( y  =  ran  f  -> 
( A. z  e.  A  E. s  e.  y  z  C_  s  <->  A. z  e.  A  E. s  e.  ran  f  z 
C_  s ) )
2522, 24anbi12d 747 . . . . . . . . . . . . . 14  |-  ( y  =  ran  f  -> 
( ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s
)  <->  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) ) )
2621, 25anbi12d 747 . . . . . . . . . . . . 13  |-  ( y  =  ran  f  -> 
( ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) )  <->  ( x  =  ( card `  ran  f )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z 
C_  s ) ) ) )
2719, 26spcev 3300 . . . . . . . . . . . 12  |-  ( ( x  =  ( card `  ran  f )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  ->  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y 
z  C_  s )
) )
28 abid 2610 . . . . . . . . . . . 12  |-  ( x  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) }  <->  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) )
2927, 28sylibr 224 . . . . . . . . . . 11  |-  ( ( x  =  ( card `  ran  f )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  ->  x  e.  { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y 
z  C_  s )
) } )
30 intss1 4492 . . . . . . . . . . 11  |-  ( x  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) }  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } 
C_  x )
3129, 30syl 17 . . . . . . . . . 10  |-  ( ( x  =  ( card `  ran  f )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } 
C_  x )
32313adant2 1080 . . . . . . . . 9  |-  ( ( x  =  ( card `  ran  f )  /\  ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. s  e.  y  z  C_  s ) ) } 
C_  x )
3317, 32eqsstrd 3639 . . . . . . . 8  |-  ( ( x  =  ( card `  ran  f )  /\  ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  -> 
( cf `  A
)  C_  x )
34333expib 1268 . . . . . . 7  |-  ( x  =  ( card `  ran  f )  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z 
C_  s ) )  ->  ( cf `  A
)  C_  x )
)
35 sseq2 3627 . . . . . . 7  |-  ( x  =  ( card `  ran  f )  ->  (
( cf `  A
)  C_  x  <->  ( cf `  A )  C_  ( card `  ran  f ) ) )
3634, 35sylibd 229 . . . . . 6  |-  ( x  =  ( card `  ran  f )  ->  (
( ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z 
C_  s ) )  ->  ( cf `  A
)  C_  ( card ` 
ran  f ) ) )
3714, 36vtocle 3282 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( ran  f  C_  A  /\  A. z  e.  A  E. s  e.  ran  f  z  C_  s ) )  -> 
( cf `  A
)  C_  ( card ` 
ran  f ) )
3813, 37sylan2 491 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  ( card ` 
ran  f ) )
39 cardidm 8785 . . . . . . 7  |-  ( card `  ( card `  ran  f ) )  =  ( card `  ran  f )
40 onss 6990 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  A  C_  On )
411, 40sylan9ssr 3617 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  f : B --> A )  ->  ran  f  C_  On )
42413adant2 1080 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  ->  ran  f  C_  On )
43 onssnum 8863 . . . . . . . . . . . 12  |-  ( ( ran  f  e.  _V  /\ 
ran  f  C_  On )  ->  ran  f  e.  dom  card )
4419, 42, 43sylancr 695 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  ->  ran  f  e.  dom  card )
45 cardid2 8779 . . . . . . . . . . 11  |-  ( ran  f  e.  dom  card  -> 
( card `  ran  f ) 
~~  ran  f )
4644, 45syl 17 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  ran  f ) 
~~  ran  f )
47 onenon 8775 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  B  e.  dom  card )
48 dffn4 6121 . . . . . . . . . . . . . 14  |-  ( f  Fn  B  <->  f : B -onto-> ran  f )
493, 48sylib 208 . . . . . . . . . . . . 13  |-  ( f : B --> A  -> 
f : B -onto-> ran  f )
50 fodomnum 8880 . . . . . . . . . . . . 13  |-  ( B  e.  dom  card  ->  ( f : B -onto-> ran  f  ->  ran  f  ~<_  B ) )
5147, 49, 50syl2im 40 . . . . . . . . . . . 12  |-  ( B  e.  On  ->  (
f : B --> A  ->  ran  f  ~<_  B )
)
5251imp 445 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  f : B --> A )  ->  ran  f  ~<_  B )
53523adant1 1079 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  ->  ran  f  ~<_  B )
54 endomtr 8014 . . . . . . . . . 10  |-  ( ( ( card `  ran  f )  ~~  ran  f  /\  ran  f  ~<_  B )  ->  ( card ` 
ran  f )  ~<_  B )
5546, 53, 54syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  ran  f )  ~<_  B )
56 cardon 8770 . . . . . . . . . . . 12  |-  ( card `  ran  f )  e.  On
57 onenon 8775 . . . . . . . . . . . 12  |-  ( (
card `  ran  f )  e.  On  ->  ( card `  ran  f )  e.  dom  card )
5856, 57ax-mp 5 . . . . . . . . . . 11  |-  ( card `  ran  f )  e. 
dom  card
59 carddom2 8803 . . . . . . . . . . 11  |-  ( ( ( card `  ran  f )  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  ( card `  ran  f ) )  C_  ( card `  B )  <->  (
card `  ran  f )  ~<_  B ) )
6058, 47, 59sylancr 695 . . . . . . . . . 10  |-  ( B  e.  On  ->  (
( card `  ( card ` 
ran  f ) ) 
C_  ( card `  B
)  <->  ( card `  ran  f )  ~<_  B ) )
61603ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( ( card `  ( card `  ran  f ) )  C_  ( card `  B )  <->  ( card ` 
ran  f )  ~<_  B ) )
6255, 61mpbird 247 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  ( card ` 
ran  f ) ) 
C_  ( card `  B
) )
63 cardonle 8783 . . . . . . . . 9  |-  ( B  e.  On  ->  ( card `  B )  C_  B )
64633ad2ant2 1083 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  B )  C_  B )
6562, 64sstrd 3613 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  ( card ` 
ran  f ) ) 
C_  B )
6639, 65syl5eqssr 3650 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On  /\  f : B --> A )  -> 
( card `  ran  f ) 
C_  B )
67663expa 1265 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  f : B --> A )  ->  ( card `  ran  f ) 
C_  B )
6867adantrr 753 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( card `  ran  f ) 
C_  B )
6938, 68sstrd 3613 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) ) )  -> 
( cf `  A
)  C_  B )
7069ex 450 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  B ) )
7170exlimdv 1861 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. f ( f : B --> A  /\  A. z  e.  A  E. w  e.  B  z  C_  ( f `  w
) )  ->  ( cf `  A )  C_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   |^|cint 4475   class class class wbr 4653   dom cdm 5114   ran crn 5115   Oncon0 5723    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-cf 8767  df-acn 8768
This theorem is referenced by:  cfsmolem  9092  cfcoflem  9094  cfcof  9096  inar1  9597
  Copyright terms: Public domain W3C validator