MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfval Structured version   Visualization version   Unicode version

Theorem cfval 9069
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number  A is the cardinality (size) of the smallest unbounded subset  y of the ordinal number. Unbounded means that for every member of  A, there is a member of  y that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfval  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
Distinct variable group:    x, y, z, w, A

Proof of Theorem cfval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cflem 9068 . . 3  |-  ( A  e.  On  ->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
2 intexab 4822 . . 3  |-  ( E. x E. y ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
31, 2sylib 208 . 2  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
4 sseq2 3627 . . . . . . . 8  |-  ( v  =  A  ->  (
y  C_  v  <->  y  C_  A ) )
5 raleq 3138 . . . . . . . 8  |-  ( v  =  A  ->  ( A. z  e.  v  E. w  e.  y 
z  C_  w  <->  A. z  e.  A  E. w  e.  y  z  C_  w ) )
64, 5anbi12d 747 . . . . . . 7  |-  ( v  =  A  ->  (
( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w )  <->  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
76anbi2d 740 . . . . . 6  |-  ( v  =  A  ->  (
( x  =  (
card `  y )  /\  ( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w )
)  <->  ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
87exbidv 1850 . . . . 5  |-  ( v  =  A  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w ) )  <->  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) ) )
98abbidv 2741 . . . 4  |-  ( v  =  A  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w ) ) }  =  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
109inteqd 4480 . . 3  |-  ( v  =  A  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w ) ) }  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
11 df-cf 8767 . . 3  |-  cf  =  ( v  e.  On  |->  |^|
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  v  /\  A. z  e.  v  E. w  e.  y  z  C_  w ) ) } )
1210, 11fvmptg 6280 . 2  |-  ( ( A  e.  On  /\  |^|
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )  -> 
( cf `  A
)  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
133, 12mpdan 702 1  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   |^|cint 4475   Oncon0 5723   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-cf 8767
This theorem is referenced by:  cfub  9071  cflm  9072  cardcf  9074  cflecard  9075  cfeq0  9078  cfsuc  9079  cff1  9080  cfflb  9081  cfval2  9082  cflim3  9084
  Copyright terms: Public domain W3C validator