MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chmatval Structured version   Visualization version   Unicode version

Theorem chmatval 20634
Description: The entries of the characteristic matrix of a matrix. (Contributed by AV, 2-Aug-2019.) (Proof shortened by AV, 10-Dec-2019.)
Hypotheses
Ref Expression
chmatcl.a  |-  A  =  ( N Mat  R )
chmatcl.b  |-  B  =  ( Base `  A
)
chmatcl.p  |-  P  =  (Poly1 `  R )
chmatcl.y  |-  Y  =  ( N Mat  P )
chmatcl.x  |-  X  =  (var1 `  R )
chmatcl.t  |-  T  =  ( N matToPolyMat  R )
chmatcl.s  |-  .-  =  ( -g `  Y )
chmatcl.m  |-  .x.  =  ( .s `  Y )
chmatcl.1  |-  .1.  =  ( 1r `  Y )
chmatcl.h  |-  H  =  ( ( X  .x.  .1.  )  .-  ( T `
 M ) )
chmatval.s  |-  .~  =  ( -g `  P )
chmatval.0  |-  .0.  =  ( 0g `  P )
Assertion
Ref Expression
chmatval  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I H J )  =  if ( I  =  J ,  ( X  .~  ( I ( T `
 M ) J ) ) ,  (  .0.  .~  ( I ( T `  M
) J ) ) ) )

Proof of Theorem chmatval
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chmatcl.h . . . 4  |-  H  =  ( ( X  .x.  .1.  )  .-  ( T `
 M ) )
21oveqi 6663 . . 3  |-  ( I H J )  =  ( I ( ( X  .x.  .1.  )  .-  ( T `  M
) ) J )
3 chmatcl.p . . . . . . 7  |-  P  =  (Poly1 `  R )
43ply1ring 19618 . . . . . 6  |-  ( R  e.  Ring  ->  P  e. 
Ring )
543ad2ant2 1083 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  P  e.  Ring )
65adantr 481 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  P  e.  Ring )
74anim2i 593 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( N  e.  Fin  /\  P  e.  Ring )
)
873adant3 1081 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( N  e.  Fin  /\  P  e.  Ring ) )
9 chmatcl.x . . . . . . . 8  |-  X  =  (var1 `  R )
10 eqid 2622 . . . . . . . 8  |-  ( Base `  P )  =  (
Base `  P )
119, 3, 10vr1cl 19587 . . . . . . 7  |-  ( R  e.  Ring  ->  X  e.  ( Base `  P
) )
12113ad2ant2 1083 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  X  e.  ( Base `  P
) )
13 chmatcl.y . . . . . . . . 9  |-  Y  =  ( N Mat  P )
143, 13pmatring 20498 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  Y  e.  Ring )
15143adant3 1081 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  Y  e.  Ring )
16 eqid 2622 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
17 chmatcl.1 . . . . . . . 8  |-  .1.  =  ( 1r `  Y )
1816, 17ringidcl 18568 . . . . . . 7  |-  ( Y  e.  Ring  ->  .1.  e.  ( Base `  Y )
)
1915, 18syl 17 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  .1.  e.  ( Base `  Y
) )
20 chmatcl.m . . . . . . 7  |-  .x.  =  ( .s `  Y )
2110, 13, 16, 20matvscl 20237 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  P  e.  Ring )  /\  ( X  e.  (
Base `  P )  /\  .1.  e.  ( Base `  Y ) ) )  ->  ( X  .x.  .1.  )  e.  ( Base `  Y ) )
228, 12, 19, 21syl12anc 1324 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( X  .x.  .1.  )  e.  ( Base `  Y
) )
2322adantr 481 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( X  .x.  .1.  )  e.  (
Base `  Y )
)
24 chmatcl.t . . . . . 6  |-  T  =  ( N matToPolyMat  R )
25 chmatcl.a . . . . . 6  |-  A  =  ( N Mat  R )
26 chmatcl.b . . . . . 6  |-  B  =  ( Base `  A
)
2724, 25, 26, 3, 13mat2pmatbas 20531 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( T `  M )  e.  ( Base `  Y
) )
2827adantr 481 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( T `  M )  e.  (
Base `  Y )
)
29 simpr 477 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I  e.  N  /\  J  e.  N ) )
30 chmatcl.s . . . . 5  |-  .-  =  ( -g `  Y )
31 chmatval.s . . . . 5  |-  .~  =  ( -g `  P )
3213, 16, 30, 31matsubgcell 20240 . . . 4  |-  ( ( P  e.  Ring  /\  (
( X  .x.  .1.  )  e.  ( Base `  Y )  /\  ( T `  M )  e.  ( Base `  Y
) )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( ( X  .x.  .1.  )  .-  ( T `
 M ) ) J )  =  ( ( I ( X 
.x.  .1.  ) J
)  .~  ( I
( T `  M
) J ) ) )
336, 23, 28, 29, 32syl121anc 1331 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( ( X  .x.  .1.  )  .-  ( T `
 M ) ) J )  =  ( ( I ( X 
.x.  .1.  ) J
)  .~  ( I
( T `  M
) J ) ) )
342, 33syl5eq 2668 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I H J )  =  ( ( I ( X 
.x.  .1.  ) J
)  .~  ( I
( T `  M
) J ) ) )
3517a1i 11 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  .1.  =  ( 1r `  Y ) )
3635oveq2d 6666 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( X  .x.  .1.  )  =  ( X  .x.  ( 1r
`  Y ) ) )
37 simpl 473 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  N  e.  Fin )
384adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  P  e.  Ring )
3911adantl 482 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  X  e.  ( Base `  P ) )
4037, 38, 393jca 1242 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( N  e.  Fin  /\  P  e.  Ring  /\  X  e.  ( Base `  P
) ) )
41403adant3 1081 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( N  e.  Fin  /\  P  e.  Ring  /\  X  e.  ( Base `  P )
) )
4241adantr 481 . . . . . . 7  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( N  e.  Fin  /\  P  e. 
Ring  /\  X  e.  (
Base `  P )
) )
43 chmatval.0 . . . . . . . 8  |-  .0.  =  ( 0g `  P )
4413, 10, 20, 43matsc 20256 . . . . . . 7  |-  ( ( N  e.  Fin  /\  P  e.  Ring  /\  X  e.  ( Base `  P
) )  ->  ( X  .x.  ( 1r `  Y ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  j ,  X ,  .0.  ) ) )
4542, 44syl 17 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( X  .x.  ( 1r `  Y
) )  =  ( i  e.  N , 
j  e.  N  |->  if ( i  =  j ,  X ,  .0.  ) ) )
4636, 45eqtrd 2656 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( X  .x.  .1.  )  =  ( i  e.  N , 
j  e.  N  |->  if ( i  =  j ,  X ,  .0.  ) ) )
47 eqeq12 2635 . . . . . . 7  |-  ( ( i  =  I  /\  j  =  J )  ->  ( i  =  j  <-> 
I  =  J ) )
4847ifbid 4108 . . . . . 6  |-  ( ( i  =  I  /\  j  =  J )  ->  if ( i  =  j ,  X ,  .0.  )  =  if ( I  =  J ,  X ,  .0.  )
)
4948adantl 482 . . . . 5  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  Ring  /\  M  e.  B
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  ( i  =  I  /\  j  =  J ) )  ->  if ( i  =  j ,  X ,  .0.  )  =  if (
I  =  J ,  X ,  .0.  )
)
50 simprl 794 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  I  e.  N )
51 simpr 477 . . . . . 6  |-  ( ( I  e.  N  /\  J  e.  N )  ->  J  e.  N )
5251adantl 482 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  J  e.  N )
53 fvex 6201 . . . . . . . 8  |-  (var1 `  R
)  e.  _V
549, 53eqeltri 2697 . . . . . . 7  |-  X  e. 
_V
55 fvex 6201 . . . . . . . 8  |-  ( 0g
`  P )  e. 
_V
5643, 55eqeltri 2697 . . . . . . 7  |-  .0.  e.  _V
5754, 56ifex 4156 . . . . . 6  |-  if ( I  =  J ,  X ,  .0.  )  e.  _V
5857a1i 11 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  if (
I  =  J ,  X ,  .0.  )  e.  _V )
5946, 49, 50, 52, 58ovmpt2d 6788 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I
( X  .x.  .1.  ) J )  =  if ( I  =  J ,  X ,  .0.  ) )
6059oveq1d 6665 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( (
I ( X  .x.  .1.  ) J )  .~  ( I ( T `
 M ) J ) )  =  ( if ( I  =  J ,  X ,  .0.  )  .~  (
I ( T `  M ) J ) ) )
61 ovif 6737 . . 3  |-  ( if ( I  =  J ,  X ,  .0.  )  .~  ( I ( T `  M ) J ) )  =  if ( I  =  J ,  ( X  .~  ( I ( T `  M ) J ) ) ,  (  .0.  .~  (
I ( T `  M ) J ) ) )
6260, 61syl6eq 2672 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( (
I ( X  .x.  .1.  ) J )  .~  ( I ( T `
 M ) J ) )  =  if ( I  =  J ,  ( X  .~  ( I ( T `
 M ) J ) ) ,  (  .0.  .~  ( I ( T `  M
) J ) ) ) )
6334, 62eqtrd 2656 1  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  /\  (
I  e.  N  /\  J  e.  N )
)  ->  ( I H J )  =  if ( I  =  J ,  ( X  .~  ( I ( T `
 M ) J ) ) ,  (  .0.  .~  ( I ( T `  M
) J ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   ifcif 4086   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   .scvsca 15945   0gc0g 16100   -gcsg 17424   1rcur 18501   Ringcrg 18547  var1cv1 19546  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator