Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climeqf Structured version   Visualization version   Unicode version

Theorem climeqf 39920
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climeqf.p  |-  F/ k
ph
climeqf.k  |-  F/_ k F
climeqf.n  |-  F/_ k G
climeqf.m  |-  ( ph  ->  M  e.  ZZ )
climeqf.z  |-  Z  =  ( ZZ>= `  M )
climeqf.f  |-  ( ph  ->  F  e.  V )
climeqf.g  |-  ( ph  ->  G  e.  W )
climeqf.e  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climeqf  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    F( k)    G( k)    M( k)    V( k)    W( k)

Proof of Theorem climeqf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climeqf.z . 2  |-  Z  =  ( ZZ>= `  M )
2 climeqf.f . 2  |-  ( ph  ->  F  e.  V )
3 climeqf.g . 2  |-  ( ph  ->  G  e.  W )
4 climeqf.m . 2  |-  ( ph  ->  M  e.  ZZ )
5 climeqf.p . . . . 5  |-  F/ k
ph
6 nfv 1843 . . . . 5  |-  F/ k  j  e.  Z
75, 6nfan 1828 . . . 4  |-  F/ k ( ph  /\  j  e.  Z )
8 climeqf.k . . . . . 6  |-  F/_ k F
9 nfcv 2764 . . . . . 6  |-  F/_ k
j
108, 9nffv 6198 . . . . 5  |-  F/_ k
( F `  j
)
11 climeqf.n . . . . . 6  |-  F/_ k G
1211, 9nffv 6198 . . . . 5  |-  F/_ k
( G `  j
)
1310, 12nfeq 2776 . . . 4  |-  F/ k ( F `  j
)  =  ( G `
 j )
147, 13nfim 1825 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( F `  j
)  =  ( G `
 j ) )
15 eleq1 2689 . . . . 5  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
1615anbi2d 740 . . . 4  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
17 fveq2 6191 . . . . 5  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
18 fveq2 6191 . . . . 5  |-  ( k  =  j  ->  ( G `  k )  =  ( G `  j ) )
1917, 18eqeq12d 2637 . . . 4  |-  ( k  =  j  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  j )  =  ( G `  j ) ) )
2016, 19imbi12d 334 . . 3  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( F `  k
)  =  ( G `
 k ) )  <-> 
( ( ph  /\  j  e.  Z )  ->  ( F `  j
)  =  ( G `
 j ) ) ) )
21 climeqf.e . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
2214, 20, 21chvar 2262 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  ( G `  j ) )
231, 2, 3, 4, 22climeq 14298 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   class class class wbr 4653   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  climeqmpt  39929
  Copyright terms: Public domain W3C validator