HomeHome Metamath Proof Explorer
Theorem List (p. 400 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 39901-40000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclimfveq 39901* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k
 ) )   =>    |-  ( ph  ->  (  ~~>  `  F )  =  (  ~~>  `  G ) )
 
Theoremclim2f2 39902* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 14225. Similar to clim2 14235, but without the disjoint var constraint  F k. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  ( A  e.  CC  /\ 
 A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclimfveqmpt 39903* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  R )   &    |-  ( ph  ->  Z  C_  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  V )   &    |-  ( ph  ->  C  e.  S )   &    |-  ( ph  ->  Z 
 C_  C )   &    |-  (
 ( ph  /\  k  e.  C )  ->  D  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  =  D )   =>    |-  ( ph  ->  (  ~~>  `  ( k  e.  A  |->  B ) )  =  (  ~~>  `  ( k  e.  C  |->  D ) ) )
 
Theoremclimd 39904* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ph  ->  X  e.  RR+ )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  X ) )
 
Theoremclim2d 39905* The limit of complex number sequence  F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ph  ->  X  e.  RR+ )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  X ) )
 
Theoremfnlimfvre 39906* The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ m ph   &    |-  F/_ m F   &    |-  F/_ x F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ( ph  /\  m  e.  Z ) 
 ->  ( F `  m ) : dom  ( F `
  m ) --> RR )   &    |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( m  e.  Z  |->  ( ( F `
  m ) `  x ) )  e. 
 dom 
 ~~>  }   &    |-  ( ph  ->  X  e.  D )   =>    |-  ( ph  ->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  X ) ) )  e. 
 RR )
 
Theoremallbutfifvre 39907* Given a sequence of real-valued functions, and  X that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ m ph   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  (
 ( ph  /\  m  e.  Z )  ->  ( F `  m ) : dom  ( F `  m ) --> RR )   &    |-  D  =  U_ n  e.  Z  |^|_
 m  e.  ( ZZ>= `  n ) dom  ( F `  m )   &    |-  ( ph  ->  X  e.  D )   =>    |-  ( ph  ->  E. n  e.  Z  A. m  e.  ( ZZ>= `  n )
 ( ( F `  m ) `  X )  e.  RR )
 
Theoremclimleltrp 39908* The limit of complex number sequence  F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  ->  ( F `  k )  e.  RR )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <_  C )   &    |-  ( ph  ->  X  e.  RR+ )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ( F `  k )  e.  RR  /\  ( F `  k
 )  <  ( C  +  X ) ) )
 
Theoremfnlimfvre2 39909* The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ m ph   &    |-  F/_ m F   &    |-  F/_ x F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ( ph  /\  m  e.  Z ) 
 ->  ( F `  m ) : dom  ( F `
  m ) --> RR )   &    |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( m  e.  Z  |->  ( ( F `
  m ) `  x ) )  e. 
 dom 
 ~~>  }   &    |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  x ) ) ) )   &    |-  ( ph  ->  X  e.  D )   =>    |-  ( ph  ->  ( G `  X )  e. 
 RR )
 
Theoremfnlimf 39910* The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ m ph   &    |-  F/_ m F   &    |-  F/_ x F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ( ph  /\  m  e.  Z ) 
 ->  ( F `  m ) : dom  ( F `
  m ) --> RR )   &    |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( m  e.  Z  |->  ( ( F `
  m ) `  x ) )  e. 
 dom 
 ~~>  }   &    |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  x ) ) ) )   =>    |-  ( ph  ->  G : D
 --> RR )
 
Theoremfnlimabslt 39911* A sequence of function values, approximates the corresponding limit function value, all but finitely many times. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/ m ph   &    |-  F/_ m F   &    |-  F/_ x F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  (
 ( ph  /\  m  e.  Z )  ->  ( F `  m ) : dom  ( F `  m ) --> RR )   &    |-  D  =  { x  e.  U_ n  e.  Z  |^|_ m  e.  ( ZZ>= `  n ) dom  ( F `  m )  |  ( m  e.  Z  |->  ( ( F `
  m ) `  x ) )  e. 
 dom 
 ~~>  }   &    |-  G  =  ( x  e.  D  |->  (  ~~>  `  ( m  e.  Z  |->  ( ( F `  m ) `  x ) ) ) )   &    |-  ( ph  ->  X  e.  D )   &    |-  ( ph  ->  Y  e.  RR+ )   =>    |-  ( ph  ->  E. n  e.  Z  A. m  e.  ( ZZ>= `  n )
 ( ( ( F `
  m ) `  X )  e.  RR  /\  ( abs `  (
 ( ( F `  m ) `  X )  -  ( G `  X ) ) )  <  Y ) )
 
Theoremclimfveqf 39912* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  (  ~~>  `  F )  =  (  ~~>  `  G ) )
 
Theoremclimmptf 39913* Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ k F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  G  =  ( k  e.  Z  |->  ( F `  k ) )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  G  ~~>  A ) )
 
Theoremclimfveqmpt3 39914* Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt 39903 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  Z 
 C_  A )   &    |-  ( ph  ->  Z  C_  C )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  U )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  =  D )   =>    |-  ( ph  ->  (  ~~>  `  ( k  e.  A  |->  B ) )  =  (  ~~>  `  ( k  e.  C  |->  D ) ) )
 
Theoremclimeldmeqf 39915* Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  e.  dom  ~~> 
 <->  G  e.  dom  ~~>  ) )
 
Theoremclimreclmpt 39916* The limit of B convergent real sequence is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  e.  RR )   &    |-  ( ph  ->  ( k  e.  Z  |->  A )  ~~>  B )   =>    |-  ( ph  ->  B  e.  RR )
 
Theoremlimsupref 39917* If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )   &    |-  ( ph  ->  F : A --> RR )   &    |-  ( ph  ->  E. b  e.  RR  E. k  e.  RR  A. j  e.  A  (
 k  <_  j  ->  ( abs `  ( F `  j ) )  <_  b ) )   =>    |-  ( ph  ->  (
 limsup `  F )  e. 
 RR )
 
Theoremlimsupbnd1f 39918* If a sequence is eventually at most 
A, then the limsup is also at most  A. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  B  C_ 
 RR )   &    |-  ( ph  ->  F : B --> RR* )   &    |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  E. k  e.  RR  A. j  e.  B  ( k  <_  j  ->  ( F `  j )  <_  A ) )   =>    |-  ( ph  ->  ( limsup `
  F )  <_  A )
 
Theoremclimbddf 39919* A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  /\ 
 A. k  e.  Z  ( F `  k )  e.  CC )  ->  E. x  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  <_  x )
 
Theoremclimeqf 39920* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  G  ~~>  A ) )
 
Theoremclimeldmeqmpt3 39921* Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 39900 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  C  e.  W )   &    |-  ( ph  ->  Z 
 C_  A )   &    |-  ( ph  ->  Z  C_  C )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  U )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  =  D )   =>    |-  ( ph  ->  ( (
 k  e.  A  |->  B )  e.  dom  ~~>  <->  ( k  e.  C  |->  D )  e. 
 dom 
 ~~>  ) )
 
Theoremlimsupcld 39922 Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  e.  V )   =>    |-  ( ph  ->  ( limsup `
  F )  e.  RR* )
 
Theoremclimfv 39923 The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( F 
 ~~>  A  ->  A  =  ( 
 ~~>  `  F ) )
 
Theoremlimsupval3 39924* The superior limit of an infinite sequence  F of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  G  =  ( k  e.  RR  |->  sup ( ( F "
 ( k [,) +oo ) ) ,  RR* ,  <  ) )   =>    |-  ( ph  ->  (
 limsup `  F )  = inf ( ran  G ,  RR*
 ,  <  ) )
 
Theoremclimfveqmpt2 39925* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  Z 
 C_  A )   &    |-  ( ph  ->  Z  C_  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  C  e.  U )   =>    |-  ( ph  ->  (  ~~>  `  ( k  e.  A  |->  C ) )  =  (  ~~>  `  ( k  e.  B  |->  C ) ) )
 
Theoremlimsup0 39926 The superior limit of the empty set (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( limsup `
  (/) )  = -oo
 
Theoremclimeldmeqmpt2 39927* Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  A  e.  W )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  Z 
 C_  A )   &    |-  ( ph  ->  Z  C_  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  C  e.  U )   =>    |-  ( ph  ->  (
 ( k  e.  A  |->  C )  e.  dom  ~~>  <->  (
 k  e.  B  |->  C )  e.  dom  ~~>  ) )
 
Theoremlimsupresre 39928 The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  e.  V )   =>    |-  ( ph  ->  ( limsup `
  ( F  |`  RR )
 )  =  ( limsup `  F ) )
 
Theoremclimeqmpt 39929* Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  B  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  Z  C_  A )   &    |-  ( ph  ->  Z  C_  B )   &    |-  ( ( ph  /\  x  e.  Z ) 
 ->  C  e.  U )   =>    |-  ( ph  ->  ( ( x  e.  A  |->  C )  ~~>  D 
 <->  ( x  e.  B  |->  C )  ~~>  D ) )
 
Theoremclimfvd 39930 The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  A  =  (  ~~>  `  F ) )
 
Theoremlimsuplesup 39931 An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  K  e.  RR )   =>    |-  ( ph  ->  ( limsup `
  F )  <_  sup ( ( ( F
 " ( K [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )
 
Theoremlimsupresico 39932 The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  RR )   &    |-  Z  =  ( M [,) +oo )   &    |-  ( ph  ->  F  e.  V )   =>    |-  ( ph  ->  (
 limsup `  ( F  |`  Z ) )  =  ( limsup `  F ) )
 
Theoremlimsuppnfdlem 39933* If the restriction of a function to every upper interval is unbounded above, its  limsup is +oo. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  ( ph  ->  A. x  e.  RR  A. k  e.  RR  E. j  e.  A  ( k  <_  j  /\  x  <_  ( F `  j ) ) )   &    |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   =>    |-  ( ph  ->  ( limsup `
  F )  = +oo )
 
Theoremlimsuppnfd 39934* If the restriction of a function to every upper interval is unbounded above, its  limsup is +oo. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  ( ph  ->  A. x  e.  RR  A. k  e.  RR  E. j  e.  A  (
 k  <_  j  /\  x  <_  ( F `  j ) ) )   =>    |-  ( ph  ->  ( limsup `  F )  = +oo )
 
Theoremlimsupresuz 39935 If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  dom  ( F  |` 
 RR )  C_  ZZ )   =>    |-  ( ph  ->  ( limsup `
  ( F  |`  Z ) )  =  ( limsup `  F ) )
 
Theoremlimsupub 39936* If the limsup is not +oo, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  F/_ j F   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  ( ph  ->  (
 limsup `  F )  =/= +oo )   =>    |-  ( ph  ->  E. x  e.  RR  E. k  e. 
 RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j ) 
 <_  x ) )
 
Theoremlimsupres 39937 The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  F  e.  V )   =>    |-  ( ph  ->  ( limsup `
  ( F  |`  C ) )  <_  ( limsup `  F ) )
 
Theoremcliminf2lem 39938* A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )   &    |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  F  ~~> inf ( ran  F ,  RR* ,  <  ) )
 
Theoremcliminf2 39939* A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )   &    |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  F  ~~> inf ( ran  F ,  RR* ,  <  ) )
 
Theoremlimsupvaluz 39940* The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   =>    |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
 ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
 
Theoremlimsupresuz2 39941 If the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  dom  F  C_  ZZ )   =>    |-  ( ph  ->  ( limsup `
  ( F  |`  Z ) )  =  ( limsup `  F ) )
 
Theoremlimsuppnflem 39942* If the restriction of a function to every upper interval is unbounded above, its  limsup is +oo. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  = +oo  <->  A. x  e.  RR  A. k  e.  RR  E. j  e.  A  ( k  <_  j  /\  x  <_  ( F `  j ) ) ) )
 
Theoremlimsuppnf 39943* If the restriction of a function to every upper interval is unbounded above, its  limsup is +oo. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  = +oo  <->  A. x  e.  RR  A. k  e.  RR  E. j  e.  A  ( k  <_  j  /\  x  <_  ( F `  j ) ) ) )
 
Theoremlimsupubuzlem 39944* If the limsup is not +oo, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  F/_ j X   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  ( ph  ->  Y  e.  RR )   &    |-  ( ph  ->  K  e.  RR )   &    |-  ( ph  ->  A. j  e.  Z  ( K  <_  j  ->  ( F `  j ) 
 <_  Y ) )   &    |-  N  =  if ( ( `  K )  <_  M ,  M ,  ( `  K )
 )   &    |-  W  =  sup ( ran  ( j  e.  ( M ... N )  |->  ( F `  j ) ) ,  RR ,  <  )   &    |-  X  =  if ( W  <_  Y ,  Y ,  W )   =>    |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  ( F `  j ) 
 <_  x )
 
Theoremlimsupubuz 39945* For a real-valued function on a set of upper integers, if the superior limit is not +oo, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  ( ph  ->  ( limsup `  F )  =/= +oo )   =>    |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  ( F `  j )  <_  x )
 
Theoremcliminf2mpt 39946* A bounded below, monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  RR )   &    |-  (
 k  =  j  ->  B  =  C )   &    |-  (
 ( ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  ->  C  <_  B )   &    |-  ( ph  ->  ( k  e.  Z  |->  B )  e.  dom  ~~>  )   =>    |-  ( ph  ->  ( k  e.  Z  |->  B )  ~~> inf ( ran  (
 k  e.  Z  |->  B ) ,  RR* ,  <  ) )
 
Theoremcliminfmpt 39947* A bounded below, monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  RR )   &    |-  (
 k  =  j  ->  B  =  C )   &    |-  (
 ( ph  /\  k  e.  Z  /\  j  =  ( k  +  1 ) )  ->  C  <_  B )   &    |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  B )   =>    |-  ( ph  ->  (
 k  e.  Z  |->  B )  ~~> inf ( ran  (
 k  e.  Z  |->  B ) ,  RR* ,  <  ) )
 
Theoremcliminf3 39948* A convergent, non-increasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   =>    |-  ( ph  ->  F  ~~> inf ( ran  F ,  RR* ,  <  ) )
 
Theoremlimsupvaluzmpt 39949* The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -oo and the r.h.s. would be +oo). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( limsup `
  ( j  e.  Z  |->  B ) )  = inf ( ran  (
 k  e.  Z  |->  sup ( ran  ( j  e.  ( ZZ>= `  k
 )  |->  B ) , 
 RR* ,  <  ) ) ,  RR* ,  <  )
 )
 
Theoremlimsupequzmpt2 39950* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  F/_ j A   &    |-  F/_ j B   &    |-  A  =  ( ZZ>= `  M )   &    |-  B  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  K  e.  A )   &    |-  ( ph  ->  K  e.  B )   &    |-  ( ( ph  /\  j  e.  ( ZZ>= `  K ) )  ->  C  e.  V )   =>    |-  ( ph  ->  ( limsup `  (
 j  e.  A  |->  C ) )  =  (
 limsup `  ( j  e.  B  |->  C ) ) )
 
Theoremlimsupubuzmpt 39951* If the limsup is not +oo, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  B  e.  RR )   &    |-  ( ph  ->  (
 limsup `  ( j  e.  Z  |->  B ) )  =/= +oo )   =>    |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  B  <_  x )
 
Theoremlimsupmnflem 39952* The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  G  =  ( k  e.  RR  |->  sup ( ( F "
 ( k [,) +oo ) ) ,  RR* ,  <  ) )   =>    |-  ( ph  ->  ( ( limsup `  F )  = -oo  <->  A. x  e.  RR  E. k  e.  RR  A. j  e.  A  (
 k  <_  j  ->  ( F `  j ) 
 <_  x ) ) )
 
Theoremlimsupmnf 39953* The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  = -oo  <->  A. x  e.  RR  E. k  e.  RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j )  <_  x ) ) )
 
Theoremlimsupequzlem 39954* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  Fn  ( ZZ>=
 `  M ) )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  G  Fn  ( ZZ>= `  N ) )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  K )
 )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  ( limsup `
  F )  =  ( limsup `  G )
 )
 
Theoremlimsupequz 39955* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ k ph   &    |-  F/_ k F   &    |-  F/_ k G   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  Fn  ( ZZ>= `  M ) )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  G  Fn  ( ZZ>=
 `  N ) )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  K ) )  ->  ( F `  k )  =  ( G `  k ) )   =>    |-  ( ph  ->  (
 limsup `  F )  =  ( limsup `  G )
 )
 
Theoremlimsupre2lem 39956* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  RR  E. j  e.  A  (
 k  <_  j  /\  x  <  ( F `  j ) )  /\  E. x  e.  RR  E. k  e.  RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j )  <  x ) ) ) )
 
Theoremlimsupre2 39957* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  RR  E. j  e.  A  (
 k  <_  j  /\  x  <  ( F `  j ) )  /\  E. x  e.  RR  E. k  e.  RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j )  <  x ) ) ) )
 
Theoremlimsupmnfuzlem 39958* The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  = -oo  <->  A. x  e.  RR  E. k  e.  Z  A. j  e.  ( ZZ>= `  k )
 ( F `  j
 )  <_  x )
 )
 
Theoremlimsupmnfuz 39959* The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   =>    |-  ( ph  ->  (
 ( limsup `  F )  = -oo  <->  A. x  e.  RR  E. k  e.  Z  A. j  e.  ( ZZ>= `  k ) ( F `
  j )  <_  x ) )
 
Theoremlimsupequzmptlem 39960* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  A  =  ( ZZ>= `  M )   &    |-  B  =  (
 ZZ>= `  N )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  V )   &    |-  ( ( ph  /\  j  e.  B ) 
 ->  C  e.  W )   &    |-  K  =  if ( M  <_  N ,  N ,  M )   =>    |-  ( ph  ->  ( limsup `
  ( j  e.  A  |->  C ) )  =  ( limsup `  (
 j  e.  B  |->  C ) ) )
 
Theoremlimsupequzmpt 39961* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  A  =  ( ZZ>= `  M )   &    |-  B  =  (
 ZZ>= `  N )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  V )   &    |-  ( ( ph  /\  j  e.  B ) 
 ->  C  e.  W )   =>    |-  ( ph  ->  ( limsup `  ( j  e.  A  |->  C ) )  =  ( limsup `  ( j  e.  B  |->  C ) ) )
 
Theoremlimsupre2mpt 39962* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   =>    |-  ( ph  ->  ( ( limsup `  ( x  e.  A  |->  B ) )  e. 
 RR 
 <->  ( E. y  e. 
 RR  A. k  e.  RR  E. x  e.  A  ( k  <_  x  /\  y  <  B )  /\  E. y  e.  RR  E. k  e.  RR  A. x  e.  A  ( k  <_  x  ->  B  <  y
 ) ) ) )
 
Theoremlimsupequzmptf 39963* Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  F/_ j A   &    |-  F/_ j B   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  A  =  ( ZZ>= `  M )   &    |-  B  =  ( ZZ>= `  N )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  V )   &    |-  ( ( ph  /\  j  e.  B ) 
 ->  C  e.  W )   =>    |-  ( ph  ->  ( limsup `  ( j  e.  A  |->  C ) )  =  ( limsup `  ( j  e.  B  |->  C ) ) )
 
Theoremlimsupre3lem 39964* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  RR  E. j  e.  A  (
 k  <_  j  /\  x  <_  ( F `  j ) )  /\  E. x  e.  RR  E. k  e.  RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j )  <_  x ) ) ) )
 
Theoremlimsupre3 39965* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  F : A --> RR* )   =>    |-  ( ph  ->  ( ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  RR  E. j  e.  A  (
 k  <_  j  /\  x  <_  ( F `  j ) )  /\  E. x  e.  RR  E. k  e.  RR  A. j  e.  A  ( k  <_  j  ->  ( F `  j )  <_  x ) ) ) )
 
Theoremlimsupre3mpt 39966* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ x ph   &    |-  ( ph  ->  A 
 C_  RR )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  RR* )   =>    |-  ( ph  ->  ( ( limsup `  ( x  e.  A  |->  B ) )  e. 
 RR 
 <->  ( E. y  e. 
 RR  A. k  e.  RR  E. x  e.  A  ( k  <_  x  /\  y  <_  B )  /\  E. y  e.  RR  E. k  e.  RR  A. x  e.  A  ( k  <_  x  ->  B  <_  y
 ) ) ) )
 
Theoremlimsupre3uzlem 39967* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, infinitely often; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   =>    |-  ( ph  ->  (
 ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  Z  E. j  e.  ( ZZ>= `  k ) x  <_  ( F `  j )  /\  E. x  e.  RR  E. k  e.  Z  A. j  e.  ( ZZ>= `  k )
 ( F `  j
 )  <_  x )
 ) )
 
Theoremlimsupre3uz 39968* Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, infinitely often; 2. there is a real number that is eventually larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   =>    |-  ( ph  ->  (
 ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  Z  E. j  e.  ( ZZ>= `  k ) x  <_  ( F `  j )  /\  E. x  e.  RR  E. k  e.  Z  A. j  e.  ( ZZ>= `  k )
 ( F `  j
 )  <_  x )
 ) )
 
Theoremlimsupreuz 39969* Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, infinitely often; 2. there is a real number that is larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/_ j F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   =>    |-  ( ph  ->  (
 ( limsup `  F )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  Z  E. j  e.  ( ZZ>= `  k ) x  <_  ( F `  j )  /\  E. x  e.  RR  A. j  e.  Z  ( F `  j )  <_  x ) ) )
 
Theoremlimsupvaluz2 39970* The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  ( ph  ->  ( limsup `  F )  e.  RR )   =>    |-  ( ph  ->  ( limsup `  F )  = inf ( ran  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k )
 ) ,  RR* ,  <  ) ) ,  RR ,  <  ) )
 
Theoremlimsupreuzmpt 39971* Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller or equal than the function, infinitely often; 2. there is a real number that is larger or equal than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  B  e.  RR )   =>    |-  ( ph  ->  (
 ( limsup `  ( j  e.  Z  |->  B ) )  e.  RR  <->  ( E. x  e.  RR  A. k  e.  Z  E. j  e.  ( ZZ>= `  k ) x  <_  B  /\  E. x  e.  RR  A. j  e.  Z  B  <_  x ) ) )
 
Theoremsupcnvlimsup 39972* If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   &    |-  ( ph  ->  ( limsup `  F )  e.  RR )   =>    |-  ( ph  ->  ( k  e.  Z  |->  sup ( ran  ( F  |`  ( ZZ>= `  k
 ) ) ,  RR* ,  <  ) )  ~~>  ( limsup `  F ) )
 
Theoremsupcnvlimsupmpt 39973* If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  F/ j ph   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  (
 ( ph  /\  j  e.  Z )  ->  B  e.  RR )   &    |-  ( ph  ->  (
 limsup `  ( j  e.  Z  |->  B ) )  e.  RR )   =>    |-  ( ph  ->  ( k  e.  Z  |->  sup ( ran  ( j  e.  ( ZZ>= `  k
 )  |->  B ) , 
 RR* ,  <  ) )  ~~>  ( limsup `  ( j  e.  Z  |->  B ) ) )
 
Theorem0cnv 39974 If (/) is a complex number, then it converges to itself. (see 0ncn 9954 and its comment ; see also the comment in climlimsupcex 40001) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( (/) 
 e.  CC  ->  (/)  ~~>  (/) )
 
Theoremclimuzlem 39975* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> CC )   =>    |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
 
Theoremclimuz 39976* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/_ k F   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> CC )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
 
Theoremlmbr3v 39977* Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  J  e.  (TopOn `  X ) )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
 
Theoremclimisp 39978* If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> CC )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  X  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z  /\  ( F `
  k )  =/= 
 A )  ->  X  <_  ( abs `  (
 ( F `  k
 )  -  A ) ) )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( F `  k
 )  =  A )
 
Theoremlmbr3 39979* Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  F/_ k F   &    |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
 
Theoremclimrescn 39980* A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  Fn  Z )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   =>    |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> CC )
 
Theoremclimxrrelem 39981* If a seqence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ( ph  /\ +oo  e.  CC )  ->  D  <_  ( abs `  ( +oo  -  A ) ) )   &    |-  ( ( ph  /\ -oo  e.  CC )  ->  D  <_  ( abs `  ( -oo  -  A ) ) )   =>    |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> RR )
 
Theoremclimxrre 39982* If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis  F  e.  dom  ~~> is probably not enough, since in principle we could have +oo  e.  CC and -oo  e.  CC). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR* )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> RR )
 
20.32.7.1  Inferior limit (lim inf)
 
Syntaxclsi 39983 Extend class notation to include the liminf function. (actually, it makes sense for any extended real function defined on a subset of RR which is not upper-bounded)
 class liminf
 
Definitiondf-liminf 39984* Define the inferior limit of a sequence of extended real numbers. (Contributed by GS, 2-Jan-2022.)
 |- liminf  =  ( x  e.  _V  |->  sup ( ran  ( k  e.  RR  |-> inf ( ( ( x " (
 k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) , 
 RR* ,  <  ) )
 
Theoremlimsuplt2 39985* The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  B  C_  RR )   &    |-  ( ph  ->  F : B --> RR* )   &    |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  (
 ( limsup `  F )  <  A  <->  E. k  e.  RR  sup ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <  A ) )
 
Theoremliminfgord 39986 Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  (
 ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  -> inf ( ( ( F
 " ( A [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_ inf ( ( ( F
 " ( B [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )
 
Theoremlimsupvald 39987* The superior limit of a sequence  F of extended real numbers is the infimum of the set of suprema of all restrictions of  F to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  G  =  ( k  e.  RR  |->  sup (
 ( ( F "
 ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   =>    |-  ( ph  ->  ( limsup `
  F )  = inf ( ran  G ,  RR*
 ,  <  ) )
 
Theoremlimsupresicompt 39988* The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  M  e.  RR )   &    |-  Z  =  ( M [,) +oo )   =>    |-  ( ph  ->  ( limsup `  ( x  e.  A  |->  B ) )  =  ( limsup `  ( x  e.  ( A  i^i  Z )  |->  B ) ) )
 
Theoremlimsupcli 39989 Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F  e.  V   =>    |-  ( limsup `  F )  e.  RR*
 
Theoremliminfgf 39990 Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   =>    |-  G : RR --> RR*
 
Theoremliminfval 39991* The inferior limit of a set  F. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   =>    |-  ( F  e.  V  ->  (liminf `  F )  =  sup ( ran  G ,  RR* ,  <  )
 )
 
Theoremclimlimsup 39992 A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex 40001 for a counterexample) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F : Z --> RR )   =>    |-  ( ph  ->  ( F  e.  dom  ~~>  <->  F  ~~>  ( limsup `  F )
 ) )
 
Theoremlimsupge 39993* The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  B  C_  RR )   &    |-  ( ph  ->  F : B --> RR* )   &    |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  ( A  <_  ( limsup `  F ) 
 <-> 
 A. k  e.  RR  A  <_  sup ( ( ( F " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) )
 
Theoremliminfgval 39994* Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   =>    |-  ( M  e.  RR  ->  ( G `  M )  = inf ( (
 ( F " ( M [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
 
Theoremliminfcl 39995 Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( F  e.  V  ->  (liminf `  F )  e.  RR* )
 
Theoremliminfvald 39996* The inferior limit of a set  F. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  G  =  ( k  e.  RR  |-> inf ( ( ( F " (
 k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )   =>    |-  ( ph  ->  (liminf `  F )  =  sup ( ran  G ,  RR* ,  <  ) )
 
Theoremliminfval5 39997* The inferior limit of an infinite sequence  F of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  F/ k ph   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  F : A --> RR* )   &    |-  G  =  ( k  e.  RR  |-> inf ( ( F " (
 k [,) +oo ) ) ,  RR* ,  <  )
 )   =>    |-  ( ph  ->  (liminf `  F )  =  sup ( ran  G ,  RR* ,  <  ) )
 
Theoremlimsupresxr 39998 The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  Fun  F )   &    |-  A  =  ( `' F " RR* )   =>    |-  ( ph  ->  ( limsup `  ( F  |`  A ) )  =  ( limsup `  F ) )
 
Theoremliminfresxr 39999 The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  Fun  F )   &    |-  A  =  ( `' F " RR* )   =>    |-  ( ph  ->  (liminf `  ( F  |`  A ) )  =  (liminf `  F )
 )
 
Theoremliminfval2 40000* The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  G  =  ( k  e.  RR  |-> inf ( ( ( F
 " ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )
 )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  A 
 C_  RR )   &    |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )   =>    |-  ( ph  ->  (liminf `  F )  =  sup ( ( G " A ) ,  RR* ,  <  ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >