Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climmptf Structured version   Visualization version   Unicode version

Theorem climmptf 39913
Description: Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climmptf.k  |-  F/_ k F
climmptf.m  |-  ( ph  ->  M  e.  ZZ )
climmptf.f  |-  ( ph  ->  F  e.  V )
climmptf.z  |-  Z  =  ( ZZ>= `  M )
climmptf.g  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
Assertion
Ref Expression
climmptf  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable group:    k, Z
Allowed substitution hints:    ph( k)    A( k)    F( k)    G( k)    M( k)    V( k)

Proof of Theorem climmptf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climmptf.m . 2  |-  ( ph  ->  M  e.  ZZ )
2 climmptf.f . 2  |-  ( ph  ->  F  e.  V )
3 climmptf.z . . 3  |-  Z  =  ( ZZ>= `  M )
4 climmptf.g . . . 4  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
5 nfcv 2764 . . . . 5  |-  F/_ j
( F `  k
)
6 climmptf.k . . . . . 6  |-  F/_ k F
7 nfcv 2764 . . . . . 6  |-  F/_ k
j
86, 7nffv 6198 . . . . 5  |-  F/_ k
( F `  j
)
9 fveq2 6191 . . . . 5  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
105, 8, 9cbvmpt 4749 . . . 4  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( j  e.  Z  |->  ( F `  j ) )
114, 10eqtri 2644 . . 3  |-  G  =  ( j  e.  Z  |->  ( F `  j
) )
123, 11climmpt 14302 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
131, 2, 12syl2anc 693 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   F/_wnfc 2751   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   ZZcz 11377   ZZ>=cuz 11687    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator