MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksn Structured version   Visualization version   Unicode version

Theorem clwwlksn 26881
Description: The set of closed walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 24-Apr-2021.)
Assertion
Ref Expression
clwwlksn  |-  ( N  e.  NN  ->  ( N ClWWalksN  G )  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } )
Distinct variable groups:    w, G    w, N

Proof of Theorem clwwlksn
Dummy variables  g  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clwwlksn 26878 . . . . 5  |- ClWWalksN  =  ( n  e.  NN , 
g  e.  _V  |->  { w  e.  (ClWWalks `  g
)  |  ( # `  w )  =  n } )
21a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  G  e.  _V )  -> ClWWalksN  =  ( n  e.  NN ,  g  e. 
_V  |->  { w  e.  (ClWWalks `  g )  |  ( # `  w
)  =  n }
) )
3 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (ClWWalks `  g )  =  (ClWWalks `  G ) )
43adantl 482 . . . . . 6  |-  ( ( n  =  N  /\  g  =  G )  ->  (ClWWalks `  g )  =  (ClWWalks `  G )
)
5 eqeq2 2633 . . . . . . 7  |-  ( n  =  N  ->  (
( # `  w )  =  n  <->  ( # `  w
)  =  N ) )
65adantr 481 . . . . . 6  |-  ( ( n  =  N  /\  g  =  G )  ->  ( ( # `  w
)  =  n  <->  ( # `  w
)  =  N ) )
74, 6rabeqbidv 3195 . . . . 5  |-  ( ( n  =  N  /\  g  =  G )  ->  { w  e.  (ClWWalks `  g )  |  (
# `  w )  =  n }  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } )
87adantl 482 . . . 4  |-  ( ( ( N  e.  NN  /\  G  e.  _V )  /\  ( n  =  N  /\  g  =  G ) )  ->  { w  e.  (ClWWalks `  g )  |  ( # `  w
)  =  n }  =  { w  e.  (ClWWalks `  G )  |  (
# `  w )  =  N } )
9 simpl 473 . . . 4  |-  ( ( N  e.  NN  /\  G  e.  _V )  ->  N  e.  NN )
10 simpr 477 . . . 4  |-  ( ( N  e.  NN  /\  G  e.  _V )  ->  G  e.  _V )
11 fvex 6201 . . . . . 6  |-  (ClWWalks `  G
)  e.  _V
1211rabex 4813 . . . . 5  |-  { w  e.  (ClWWalks `  G )  |  ( # `  w
)  =  N }  e.  _V
1312a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  G  e.  _V )  ->  { w  e.  (ClWWalks `  G )  |  (
# `  w )  =  N }  e.  _V )
142, 8, 9, 10, 13ovmpt2d 6788 . . 3  |-  ( ( N  e.  NN  /\  G  e.  _V )  ->  ( N ClWWalksN  G )  =  { w  e.  (ClWWalks `  G )  |  (
# `  w )  =  N } )
1514expcom 451 . 2  |-  ( G  e.  _V  ->  ( N  e.  NN  ->  ( N ClWWalksN  G )  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } ) )
161reldmmpt2 6771 . . . . 5  |-  Rel  dom ClWWalksN
1716ovprc2 6685 . . . 4  |-  ( -.  G  e.  _V  ->  ( N ClWWalksN  G )  =  (/) )
18 fvprc 6185 . . . . . 6  |-  ( -.  G  e.  _V  ->  (ClWWalks `  G )  =  (/) )
1918rabeqdv 3194 . . . . 5  |-  ( -.  G  e.  _V  ->  { w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N }  =  { w  e.  (/)  |  ( # `  w )  =  N } )
20 rab0 3955 . . . . 5  |-  { w  e.  (/)  |  ( # `  w )  =  N }  =  (/)
2119, 20syl6eq 2672 . . . 4  |-  ( -.  G  e.  _V  ->  { w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N }  =  (/) )
2217, 21eqtr4d 2659 . . 3  |-  ( -.  G  e.  _V  ->  ( N ClWWalksN  G )  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } )
2322a1d 25 . 2  |-  ( -.  G  e.  _V  ->  ( N  e.  NN  ->  ( N ClWWalksN  G )  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } ) )
2415, 23pm2.61i 176 1  |-  ( N  e.  NN  ->  ( N ClWWalksN  G )  =  {
w  e.  (ClWWalks `  G
)  |  ( # `  w )  =  N } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   NNcn 11020   #chash 13117  ClWWalkscclwwlks 26875   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-clwwlksn 26878
This theorem is referenced by:  isclwwlksn  26882  clwwlksnfi  26913
  Copyright terms: Public domain W3C validator