Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtvalN Structured version   Visualization version   Unicode version

Theorem cmtvalN 34498
Description: Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 28443 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b  |-  B  =  ( Base `  K
)
cmtfval.j  |-  .\/  =  ( join `  K )
cmtfval.m  |-  ./\  =  ( meet `  K )
cmtfval.o  |-  ._|_  =  ( oc `  K )
cmtfval.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtvalN  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )

Proof of Theorem cmtvalN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmtfval.b . . . . . 6  |-  B  =  ( Base `  K
)
2 cmtfval.j . . . . . 6  |-  .\/  =  ( join `  K )
3 cmtfval.m . . . . . 6  |-  ./\  =  ( meet `  K )
4 cmtfval.o . . . . . 6  |-  ._|_  =  ( oc `  K )
5 cmtfval.c . . . . . 6  |-  C  =  ( cm `  K
)
61, 2, 3, 4, 5cmtfvalN 34497 . . . . 5  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
7 df-3an 1039 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
87opabbii 4717 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }
96, 8syl6eq 2672 . . . 4  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
109breqd 4664 . . 3  |-  ( K  e.  A  ->  ( X C Y  <->  X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } Y ) )
11103ad2ant1 1082 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y ) )
12 df-br 4654 . . . 4  |-  ( X { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } )
13 id 22 . . . . . 6  |-  ( x  =  X  ->  x  =  X )
14 oveq1 6657 . . . . . . 7  |-  ( x  =  X  ->  (
x  ./\  y )  =  ( X  ./\  y ) )
15 oveq1 6657 . . . . . . 7  |-  ( x  =  X  ->  (
x  ./\  (  ._|_  `  y ) )  =  ( X  ./\  (  ._|_  `  y ) ) )
1614, 15oveq12d 6668 . . . . . 6  |-  ( x  =  X  ->  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) )  =  ( ( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) ) )
1713, 16eqeq12d 2637 . . . . 5  |-  ( x  =  X  ->  (
x  =  ( ( x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) )  <->  X  =  (
( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) ) ) )
18 oveq2 6658 . . . . . . 7  |-  ( y  =  Y  ->  ( X  ./\  y )  =  ( X  ./\  Y
) )
19 fveq2 6191 . . . . . . . 8  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
2019oveq2d 6666 . . . . . . 7  |-  ( y  =  Y  ->  ( X  ./\  (  ._|_  `  y
) )  =  ( X  ./\  (  ._|_  `  Y ) ) )
2118, 20oveq12d 6668 . . . . . 6  |-  ( y  =  Y  ->  (
( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) )  =  ( ( X  ./\  Y
)  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
2221eqeq2d 2632 . . . . 5  |-  ( y  =  Y  ->  ( X  =  ( ( X  ./\  y )  .\/  ( X  ./\  (  ._|_  `  y ) ) )  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
2317, 22opelopab2 4996 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
2412, 23syl5bb 272 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
25243adant1 1079 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
2611, 25bitrd 268 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   Basecbs 15857   occoc 15949   joincjn 16944   meetcmee 16945   cmccmtN 34460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-cmtN 34464
This theorem is referenced by:  cmtcomlemN  34535  cmt2N  34537  cmtbr2N  34540  cmtbr3N  34541
  Copyright terms: Public domain W3C validator