| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmtbr3N | Structured version Visualization version Unicode version | ||
| Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (cmbr3 28467 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmtbr2.b |
|
| cmtbr2.j |
|
| cmtbr2.m |
|
| cmtbr2.o |
|
| cmtbr2.c |
|
| Ref | Expression |
|---|---|
| cmtbr3N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtbr2.b |
. . . . 5
| |
| 2 | cmtbr2.c |
. . . . 5
| |
| 3 | 1, 2 | cmtcomN 34536 |
. . . 4
|
| 4 | cmtbr2.j |
. . . . . 6
| |
| 5 | cmtbr2.m |
. . . . . 6
| |
| 6 | cmtbr2.o |
. . . . . 6
| |
| 7 | 1, 4, 5, 6, 2 | cmtbr2N 34540 |
. . . . 5
|
| 8 | 7 | 3com23 1271 |
. . . 4
|
| 9 | 3, 8 | bitrd 268 |
. . 3
|
| 10 | oveq2 6658 |
. . . . . 6
| |
| 11 | 10 | adantl 482 |
. . . . 5
|
| 12 | omlol 34527 |
. . . . . . . . 9
| |
| 13 | 12 | 3ad2ant1 1082 |
. . . . . . . 8
|
| 14 | simp2 1062 |
. . . . . . . 8
| |
| 15 | omllat 34529 |
. . . . . . . . . 10
| |
| 16 | 15 | 3ad2ant1 1082 |
. . . . . . . . 9
|
| 17 | simp3 1063 |
. . . . . . . . 9
| |
| 18 | 1, 4 | latjcl 17051 |
. . . . . . . . 9
|
| 19 | 16, 17, 14, 18 | syl3anc 1326 |
. . . . . . . 8
|
| 20 | omlop 34528 |
. . . . . . . . . . 11
| |
| 21 | 20 | 3ad2ant1 1082 |
. . . . . . . . . 10
|
| 22 | 1, 6 | opoccl 34481 |
. . . . . . . . . 10
|
| 23 | 21, 14, 22 | syl2anc 693 |
. . . . . . . . 9
|
| 24 | 1, 4 | latjcl 17051 |
. . . . . . . . 9
|
| 25 | 16, 17, 23, 24 | syl3anc 1326 |
. . . . . . . 8
|
| 26 | 1, 5 | latmassOLD 34516 |
. . . . . . . 8
|
| 27 | 13, 14, 19, 25, 26 | syl13anc 1328 |
. . . . . . 7
|
| 28 | 1, 4 | latjcom 17059 |
. . . . . . . . . . 11
|
| 29 | 16, 17, 14, 28 | syl3anc 1326 |
. . . . . . . . . 10
|
| 30 | 29 | oveq2d 6666 |
. . . . . . . . 9
|
| 31 | 1, 4, 5 | latabs2 17088 |
. . . . . . . . . 10
|
| 32 | 15, 31 | syl3an1 1359 |
. . . . . . . . 9
|
| 33 | 30, 32 | eqtrd 2656 |
. . . . . . . 8
|
| 34 | 1, 4 | latjcom 17059 |
. . . . . . . . 9
|
| 35 | 16, 17, 23, 34 | syl3anc 1326 |
. . . . . . . 8
|
| 36 | 33, 35 | oveq12d 6668 |
. . . . . . 7
|
| 37 | 27, 36 | eqtr3d 2658 |
. . . . . 6
|
| 38 | 37 | adantr 481 |
. . . . 5
|
| 39 | 11, 38 | eqtr2d 2657 |
. . . 4
|
| 40 | 39 | ex 450 |
. . 3
|
| 41 | 9, 40 | sylbid 230 |
. 2
|
| 42 | simp1 1061 |
. . . . . . . . 9
| |
| 43 | 1, 6 | opoccl 34481 |
. . . . . . . . . . 11
|
| 44 | 21, 17, 43 | syl2anc 693 |
. . . . . . . . . 10
|
| 45 | 1, 5 | latmcl 17052 |
. . . . . . . . . 10
|
| 46 | 16, 14, 44, 45 | syl3anc 1326 |
. . . . . . . . 9
|
| 47 | 42, 46, 14 | 3jca 1242 |
. . . . . . . 8
|
| 48 | eqid 2622 |
. . . . . . . . . 10
| |
| 49 | 1, 48, 5 | latmle1 17076 |
. . . . . . . . 9
|
| 50 | 16, 14, 44, 49 | syl3anc 1326 |
. . . . . . . 8
|
| 51 | 1, 48, 4, 5, 6 | omllaw2N 34531 |
. . . . . . . 8
|
| 52 | 47, 50, 51 | sylc 65 |
. . . . . . 7
|
| 53 | 1, 6 | opoccl 34481 |
. . . . . . . . . 10
|
| 54 | 21, 46, 53 | syl2anc 693 |
. . . . . . . . 9
|
| 55 | 1, 5 | latmcl 17052 |
. . . . . . . . 9
|
| 56 | 16, 54, 14, 55 | syl3anc 1326 |
. . . . . . . 8
|
| 57 | 1, 4 | latjcom 17059 |
. . . . . . . 8
|
| 58 | 16, 46, 56, 57 | syl3anc 1326 |
. . . . . . 7
|
| 59 | 52, 58 | eqtr3d 2658 |
. . . . . 6
|
| 60 | 59 | adantr 481 |
. . . . 5
|
| 61 | 1, 4, 5, 6 | oldmm3N 34506 |
. . . . . . . . . . 11
|
| 62 | 12, 61 | syl3an1 1359 |
. . . . . . . . . 10
|
| 63 | 62 | oveq2d 6666 |
. . . . . . . . 9
|
| 64 | 1, 5 | latmcom 17075 |
. . . . . . . . . 10
|
| 65 | 16, 14, 54, 64 | syl3anc 1326 |
. . . . . . . . 9
|
| 66 | 63, 65 | eqtr3d 2658 |
. . . . . . . 8
|
| 67 | 66 | eqeq1d 2624 |
. . . . . . 7
|
| 68 | oveq1 6657 |
. . . . . . 7
| |
| 69 | 67, 68 | syl6bi 243 |
. . . . . 6
|
| 70 | 69 | imp 445 |
. . . . 5
|
| 71 | 60, 70 | eqtrd 2656 |
. . . 4
|
| 72 | 71 | ex 450 |
. . 3
|
| 73 | 1, 4, 5, 6, 2 | cmtvalN 34498 |
. . 3
|
| 74 | 72, 73 | sylibrd 249 |
. 2
|
| 75 | 41, 74 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-oposet 34463 df-cmtN 34464 df-ol 34465 df-oml 34466 |
| This theorem is referenced by: cmtbr4N 34542 omlfh1N 34545 |
| Copyright terms: Public domain | W3C validator |