| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmtbr2N | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of the commutes relation. Remark in [Kalmbach] p. 23. (cmbr2i 28455 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cmtbr2.b |
|
| cmtbr2.j |
|
| cmtbr2.m |
|
| cmtbr2.o |
|
| cmtbr2.c |
|
| Ref | Expression |
|---|---|
| cmtbr2N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtbr2.b |
. . 3
| |
| 2 | cmtbr2.o |
. . 3
| |
| 3 | cmtbr2.c |
. . 3
| |
| 4 | 1, 2, 3 | cmt4N 34539 |
. 2
|
| 5 | simp1 1061 |
. . 3
| |
| 6 | omlop 34528 |
. . . . 5
| |
| 7 | 6 | 3ad2ant1 1082 |
. . . 4
|
| 8 | simp2 1062 |
. . . 4
| |
| 9 | 1, 2 | opoccl 34481 |
. . . 4
|
| 10 | 7, 8, 9 | syl2anc 693 |
. . 3
|
| 11 | simp3 1063 |
. . . 4
| |
| 12 | 1, 2 | opoccl 34481 |
. . . 4
|
| 13 | 7, 11, 12 | syl2anc 693 |
. . 3
|
| 14 | cmtbr2.j |
. . . 4
| |
| 15 | cmtbr2.m |
. . . 4
| |
| 16 | 1, 14, 15, 2, 3 | cmtvalN 34498 |
. . 3
|
| 17 | 5, 10, 13, 16 | syl3anc 1326 |
. 2
|
| 18 | eqcom 2629 |
. . . 4
| |
| 19 | 18 | a1i 11 |
. . 3
|
| 20 | omllat 34529 |
. . . . . 6
| |
| 21 | 20 | 3ad2ant1 1082 |
. . . . 5
|
| 22 | 1, 14 | latjcl 17051 |
. . . . . 6
|
| 23 | 20, 22 | syl3an1 1359 |
. . . . 5
|
| 24 | 1, 14 | latjcl 17051 |
. . . . . 6
|
| 25 | 21, 8, 13, 24 | syl3anc 1326 |
. . . . 5
|
| 26 | 1, 15 | latmcl 17052 |
. . . . 5
|
| 27 | 21, 23, 25, 26 | syl3anc 1326 |
. . . 4
|
| 28 | 1, 2 | opcon3b 34483 |
. . . 4
|
| 29 | 7, 27, 8, 28 | syl3anc 1326 |
. . 3
|
| 30 | omlol 34527 |
. . . . . . 7
| |
| 31 | 30 | 3ad2ant1 1082 |
. . . . . 6
|
| 32 | 1, 14, 15, 2 | oldmm1 34504 |
. . . . . 6
|
| 33 | 31, 23, 25, 32 | syl3anc 1326 |
. . . . 5
|
| 34 | 1, 14, 15, 2 | oldmj1 34508 |
. . . . . . 7
|
| 35 | 30, 34 | syl3an1 1359 |
. . . . . 6
|
| 36 | 1, 14, 15, 2 | oldmj1 34508 |
. . . . . . 7
|
| 37 | 31, 8, 13, 36 | syl3anc 1326 |
. . . . . 6
|
| 38 | 35, 37 | oveq12d 6668 |
. . . . 5
|
| 39 | 33, 38 | eqtrd 2656 |
. . . 4
|
| 40 | 39 | eqeq2d 2632 |
. . 3
|
| 41 | 19, 29, 40 | 3bitrrd 295 |
. 2
|
| 42 | 4, 17, 41 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-oposet 34463 df-cmtN 34464 df-ol 34465 df-oml 34466 |
| This theorem is referenced by: cmtbr3N 34541 |
| Copyright terms: Public domain | W3C validator |