MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   Unicode version

Theorem cncls2 21077
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( ( cls `  J ) `
 ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `
 x ) ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 21053 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expia 1267 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  F : X
--> Y ) )
3 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P Y  ->  x  C_  Y )
43adantl 482 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_  Y )
5 toponuni 20719 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 763 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  Y  =  U. K )
74, 6sseqtrd 3641 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_ 
U. K )
8 eqid 2622 . . . . . . 7  |-  U. K  =  U. K
98cncls2i 21074 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  C_  U. K )  ->  ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) ) )
109expcom 451 . . . . 5  |-  ( x 
C_  U. K  ->  ( F  e.  ( J  Cn  K )  ->  (
( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) ) )
117, 10syl 17 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  ( F  e.  ( J  Cn  K )  ->  (
( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) ) )
1211ralrimdva 2969 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  A. x  e.  ~P  Y ( ( cls `  J ) `
 ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `
 x ) ) ) )
132, 12jcad 555 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  ( F : X --> Y  /\  A. x  e.  ~P  Y
( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) ) ) )
148cldss2 20834 . . . . . . . . 9  |-  ( Clsd `  K )  C_  ~P U. K
155ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  Y  =  U. K )
1615pweqd 4163 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ~P Y  =  ~P U. K
)
1714, 16syl5sseqr 3654 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( Clsd `  K )  C_  ~P Y )
1817sseld 3602 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  ( Clsd `  K )  ->  x  e.  ~P Y ) )
1918imim1d 82 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) ) )  -> 
( x  e.  (
Clsd `  K )  ->  ( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) ) ) )
20 cldcls 20846 . . . . . . . . . . . 12  |-  ( x  e.  ( Clsd `  K
)  ->  ( ( cls `  K ) `  x )  =  x )
2120ad2antll 765 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( ( cls `  K
) `  x )  =  x )
2221imaeq2d 5466 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( `' F "
( ( cls `  K
) `  x )
)  =  ( `' F " x ) )
2322sseq2d 3633 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) )  <->  ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " x ) ) )
24 topontop 20718 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2524ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  ->  J  e.  Top )
26 cnvimass 5485 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  dom  F
27 fdm 6051 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  dom  F  =  X )
2827ad2antrl 764 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  ->  dom  F  =  X )
29 toponuni 20719 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3029ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  ->  X  =  U. J )
3128, 30eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  ->  dom  F  =  U. J
)
3226, 31syl5sseq 3653 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( `' F "
x )  C_  U. J
)
33 eqid 2622 . . . . . . . . . . 11  |-  U. J  =  U. J
3433iscld4 20869 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) ) )
3525, 32, 34syl2anc 693 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( ( `' F " x )  e.  (
Clsd `  J )  <->  ( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) ) )
3623, 35bitr4d 271 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  x  e.  ( Clsd `  K
) ) )  -> 
( ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) )  <->  ( `' F " x )  e.  ( Clsd `  J
) ) )
3736expr 643 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  ( Clsd `  K )  ->  (
( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
)  <->  ( `' F " x )  e.  (
Clsd `  J )
) ) )
3837pm5.74d 262 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  (
Clsd `  K )  ->  ( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) )  <->  ( x  e.  ( Clsd `  K
)  ->  ( `' F " x )  e.  ( Clsd `  J
) ) ) )
3919, 38sylibd 229 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) ) )  -> 
( x  e.  (
Clsd `  K )  ->  ( `' F "
x )  e.  (
Clsd `  J )
) ) )
4039ralimdv2 2961 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ~P  Y ( ( cls `  J ) `  ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `  x
) )  ->  A. x  e.  ( Clsd `  K
) ( `' F " x )  e.  (
Clsd `  J )
) )
4140imdistanda 729 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) )  ->  ( F : X --> Y  /\  A. x  e.  ( Clsd `  K ) ( `' F " x )  e.  ( Clsd `  J
) ) ) )
42 iscncl 21073 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ( Clsd `  K
) ( `' F " x )  e.  (
Clsd `  J )
) ) )
4341, 42sylibrd 249 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( ( cls `  J
) `  ( `' F " x ) ) 
C_  ( `' F " ( ( cls `  K
) `  x )
) )  ->  F  e.  ( J  Cn  K
) ) )
4413, 43impbid 202 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( ( cls `  J ) `
 ( `' F " x ) )  C_  ( `' F " ( ( cls `  K ) `
 x ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   `'ccnv 5113   dom cdm 5114   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   Clsdccld 20820   clsccl 20822    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cld 20823  df-cls 20825  df-cn 21031
This theorem is referenced by:  cncls  21078
  Copyright terms: Public domain W3C validator