Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndprobval Structured version   Visualization version   Unicode version

Theorem cndprobval 30495
Description: The value of the conditional probability , i.e. the probability for the event  A, given  B, under the probability law  P. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
cndprobval  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  -> 
( (cprob `  P
) `  <. A ,  B >. )  =  ( ( P `  ( A  i^i  B ) )  /  ( P `  B ) ) )

Proof of Theorem cndprobval
Dummy variables  a 
b  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( A (cprob `  P ) B )  =  ( (cprob `  P ) `  <. A ,  B >. )
2 df-cndprob 30494 . . . . . 6  |- cprob  =  ( p  e. Prob  |->  ( a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `  ( a  i^i  b
) )  /  (
p `  b )
) ) )
32a1i 11 . . . . 5  |-  ( P  e. Prob  -> cprob  =  ( p  e. Prob 
|->  ( a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `
 ( a  i^i  b ) )  / 
( p `  b
) ) ) ) )
4 dmeq 5324 . . . . . . 7  |-  ( p  =  P  ->  dom  p  =  dom  P )
5 fveq1 6190 . . . . . . . 8  |-  ( p  =  P  ->  (
p `  ( a  i^i  b ) )  =  ( P `  (
a  i^i  b )
) )
6 fveq1 6190 . . . . . . . 8  |-  ( p  =  P  ->  (
p `  b )  =  ( P `  b ) )
75, 6oveq12d 6668 . . . . . . 7  |-  ( p  =  P  ->  (
( p `  (
a  i^i  b )
)  /  ( p `
 b ) )  =  ( ( P `
 ( a  i^i  b ) )  / 
( P `  b
) ) )
84, 4, 7mpt2eq123dv 6717 . . . . . 6  |-  ( p  =  P  ->  (
a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `
 ( a  i^i  b ) )  / 
( p `  b
) ) )  =  ( a  e.  dom  P ,  b  e.  dom  P 
|->  ( ( P `  ( a  i^i  b
) )  /  ( P `  b )
) ) )
98adantl 482 . . . . 5  |-  ( ( P  e. Prob  /\  p  =  P )  ->  (
a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `
 ( a  i^i  b ) )  / 
( p `  b
) ) )  =  ( a  e.  dom  P ,  b  e.  dom  P 
|->  ( ( P `  ( a  i^i  b
) )  /  ( P `  b )
) ) )
10 id 22 . . . . 5  |-  ( P  e. Prob  ->  P  e. Prob )
11 dmexg 7097 . . . . . 6  |-  ( P  e. Prob  ->  dom  P  e.  _V )
12 mpt2exga 7246 . . . . . 6  |-  ( ( dom  P  e.  _V  /\ 
dom  P  e.  _V )  ->  ( a  e. 
dom  P ,  b  e.  dom  P  |->  ( ( P `  (
a  i^i  b )
)  /  ( P `
 b ) ) )  e.  _V )
1311, 11, 12syl2anc 693 . . . . 5  |-  ( P  e. Prob  ->  ( a  e. 
dom  P ,  b  e.  dom  P  |->  ( ( P `  (
a  i^i  b )
)  /  ( P `
 b ) ) )  e.  _V )
143, 9, 10, 13fvmptd 6288 . . . 4  |-  ( P  e. Prob  ->  (cprob `  P
)  =  ( a  e.  dom  P , 
b  e.  dom  P  |->  ( ( P `  ( a  i^i  b
) )  /  ( P `  b )
) ) )
15143ad2ant1 1082 . . 3  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  -> 
(cprob `  P )  =  ( a  e. 
dom  P ,  b  e.  dom  P  |->  ( ( P `  (
a  i^i  b )
)  /  ( P `
 b ) ) ) )
16 simprl 794 . . . . . 6  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
a  =  A )
17 simprr 796 . . . . . 6  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
b  =  B )
1816, 17ineq12d 3815 . . . . 5  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
( a  i^i  b
)  =  ( A  i^i  B ) )
1918fveq2d 6195 . . . 4  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
( P `  (
a  i^i  b )
)  =  ( P `
 ( A  i^i  B ) ) )
2017fveq2d 6195 . . . 4  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
( P `  b
)  =  ( P `
 B ) )
2119, 20oveq12d 6668 . . 3  |-  ( ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  /\  ( a  =  A  /\  b  =  B ) )  -> 
( ( P `  ( a  i^i  b
) )  /  ( P `  b )
)  =  ( ( P `  ( A  i^i  B ) )  /  ( P `  B ) ) )
22 simp2 1062 . . 3  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  ->  A  e.  dom  P )
23 simp3 1063 . . 3  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  ->  B  e.  dom  P )
24 ovexd 6680 . . 3  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  -> 
( ( P `  ( A  i^i  B ) )  /  ( P `
 B ) )  e.  _V )
2515, 21, 22, 23, 24ovmpt2d 6788 . 2  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  -> 
( A (cprob `  P ) B )  =  ( ( P `
 ( A  i^i  B ) )  /  ( P `  B )
) )
261, 25syl5eqr 2670 1  |-  ( ( P  e. Prob  /\  A  e.  dom  P  /\  B  e.  dom  P )  -> 
( (cprob `  P
) `  <. A ,  B >. )  =  ( ( P `  ( A  i^i  B ) )  /  ( P `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   <.cop 4183    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    / cdiv 10684  Probcprb 30469  cprobccprob 30493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cndprob 30494
This theorem is referenced by:  cndprobin  30496  cndprob01  30497  cndprobtot  30498  cndprobnul  30499  cndprobprob  30500
  Copyright terms: Public domain W3C validator