MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfval Structured version   Visualization version   Unicode version

Theorem cnextfval 21866
Description: The continuous extension of a given function  F. (Contributed by Thierry Arnoux, 1-Dec-2017.)
Hypotheses
Ref Expression
cnextfval.1  |-  X  = 
U. J
cnextfval.2  |-  B  = 
U. K
Assertion
Ref Expression
cnextfval  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  (
( JCnExt K ) `
 F )  = 
U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
Distinct variable groups:    x, J    x, K    x, A    x, B    x, F    x, X

Proof of Theorem cnextfval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnextval 21865 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( JCnExt K )  =  ( f  e.  ( U. K  ^pm  U. J )  |->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
21adantr 481 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  ( JCnExt K )  =  ( f  e.  ( U. K  ^pm  U. J ) 
|->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
3 simpr 477 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  f  =  F )
43dmeqd 5326 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  dom  f  =  dom  F )
5 simplrl 800 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  F : A
--> B )
6 fdm 6051 . . . . . 6  |-  ( F : A --> B  ->  dom  F  =  A )
75, 6syl 17 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  dom  F  =  A )
84, 7eqtrd 2656 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  dom  f  =  A )
98fveq2d 6195 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  ( ( cls `  J ) `  dom  f )  =  ( ( cls `  J
) `  A )
)
108oveq2d 6666 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  ( (
( nei `  J
) `  { x } )t  dom  f )  =  ( ( ( nei `  J ) `  {
x } )t  A ) )
1110oveq2d 6666 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  ( K  fLimf  ( ( ( nei `  J ) `  {
x } )t  dom  f
) )  =  ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) )
1211, 3fveq12d 6197 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
dom  f ) ) `
 f )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
1312xpeq2d 5139 . . 3  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  ( {
x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )  =  ( { x }  X.  ( ( K 
fLimf  ( ( ( nei `  J ) `  {
x } )t  A ) ) `  F ) ) )
149, 13iuneq12d 4546 . 2  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X ) )  /\  f  =  F )  ->  U_ x  e.  ( ( cls `  J
) `  dom  f ) ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  dom  f ) ) `
 f ) )  =  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
15 uniexg 6955 . . . 4  |-  ( K  e.  Top  ->  U. K  e.  _V )
1615ad2antlr 763 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  U. K  e.  _V )
17 uniexg 6955 . . . 4  |-  ( J  e.  Top  ->  U. J  e.  _V )
1817ad2antrr 762 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  U. J  e.  _V )
19 eqid 2622 . . . . . 6  |-  A  =  A
20 cnextfval.2 . . . . . 6  |-  B  = 
U. K
2119, 20feq23i 6039 . . . . 5  |-  ( F : A --> B  <->  F : A
--> U. K )
2221biimpi 206 . . . 4  |-  ( F : A --> B  ->  F : A --> U. K
)
2322ad2antrl 764 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  F : A --> U. K )
24 cnextfval.1 . . . . . 6  |-  X  = 
U. J
2524sseq2i 3630 . . . . 5  |-  ( A 
C_  X  <->  A  C_  U. J
)
2625biimpi 206 . . . 4  |-  ( A 
C_  X  ->  A  C_ 
U. J )
2726ad2antll 765 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  A  C_ 
U. J )
28 elpm2r 7875 . . 3  |-  ( ( ( U. K  e. 
_V  /\  U. J  e. 
_V )  /\  ( F : A --> U. K  /\  A  C_  U. J
) )  ->  F  e.  ( U. K  ^pm  U. J ) )
2916, 18, 23, 27, 28syl22anc 1327 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  F  e.  ( U. K  ^pm  U. J ) )
30 fvex 6201 . . . 4  |-  ( ( cls `  J ) `
 A )  e. 
_V
31 snex 4908 . . . . 5  |-  { x }  e.  _V
32 fvex 6201 . . . . 5  |-  ( ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) `  F )  e.  _V
3331, 32xpex 6962 . . . 4  |-  ( { x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  e. 
_V
3430, 33iunex 7147 . . 3  |-  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  e. 
_V
3534a1i 11 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  e. 
_V )
362, 14, 29, 35fvmptd 6288 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  X
) )  ->  (
( JCnExt K ) `
 F )  = 
U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {csn 4177   U.cuni 4436   U_ciun 4520    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   ↾t crest 16081   Topctop 20698   clsccl 20822   neicnei 20901    fLimf cflf 21739  CnExtccnext 21863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-cnext 21864
This theorem is referenced by:  cnextrel  21867  cnextfun  21868  cnextfvval  21869  cnextf  21870  cnextfres  21873
  Copyright terms: Public domain W3C validator