| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnextfval | Structured version Visualization version Unicode version | ||
| Description: The continuous extension
of a given function |
| Ref | Expression |
|---|---|
| cnextfval.1 |
|
| cnextfval.2 |
|
| Ref | Expression |
|---|---|
| cnextfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextval 21865 |
. . 3
| |
| 2 | 1 | adantr 481 |
. 2
|
| 3 | simpr 477 |
. . . . . 6
| |
| 4 | 3 | dmeqd 5326 |
. . . . 5
|
| 5 | simplrl 800 |
. . . . . 6
| |
| 6 | fdm 6051 |
. . . . . 6
| |
| 7 | 5, 6 | syl 17 |
. . . . 5
|
| 8 | 4, 7 | eqtrd 2656 |
. . . 4
|
| 9 | 8 | fveq2d 6195 |
. . 3
|
| 10 | 8 | oveq2d 6666 |
. . . . . 6
|
| 11 | 10 | oveq2d 6666 |
. . . . 5
|
| 12 | 11, 3 | fveq12d 6197 |
. . . 4
|
| 13 | 12 | xpeq2d 5139 |
. . 3
|
| 14 | 9, 13 | iuneq12d 4546 |
. 2
|
| 15 | uniexg 6955 |
. . . 4
| |
| 16 | 15 | ad2antlr 763 |
. . 3
|
| 17 | uniexg 6955 |
. . . 4
| |
| 18 | 17 | ad2antrr 762 |
. . 3
|
| 19 | eqid 2622 |
. . . . . 6
| |
| 20 | cnextfval.2 |
. . . . . 6
| |
| 21 | 19, 20 | feq23i 6039 |
. . . . 5
|
| 22 | 21 | biimpi 206 |
. . . 4
|
| 23 | 22 | ad2antrl 764 |
. . 3
|
| 24 | cnextfval.1 |
. . . . . 6
| |
| 25 | 24 | sseq2i 3630 |
. . . . 5
|
| 26 | 25 | biimpi 206 |
. . . 4
|
| 27 | 26 | ad2antll 765 |
. . 3
|
| 28 | elpm2r 7875 |
. . 3
| |
| 29 | 16, 18, 23, 27, 28 | syl22anc 1327 |
. 2
|
| 30 | fvex 6201 |
. . . 4
| |
| 31 | snex 4908 |
. . . . 5
| |
| 32 | fvex 6201 |
. . . . 5
| |
| 33 | 31, 32 | xpex 6962 |
. . . 4
|
| 34 | 30, 33 | iunex 7147 |
. . 3
|
| 35 | 34 | a1i 11 |
. 2
|
| 36 | 2, 14, 29, 35 | fvmptd 6288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pm 7860 df-cnext 21864 |
| This theorem is referenced by: cnextrel 21867 cnextfun 21868 cnextfvval 21869 cnextf 21870 cnextfres 21873 |
| Copyright terms: Public domain | W3C validator |