MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Visualization version   Unicode version

Theorem cnindis 21096
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )

Proof of Theorem cnindis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 4197 . . . . . . 7  |-  ( x  e.  { (/) ,  A }  ->  ( x  =  (/)  \/  x  =  A ) )
2 topontop 20718 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
32ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  J  e.  Top )
4 0opn 20709 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (/)  e.  J
)
53, 4syl 17 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  (/) 
e.  J )
6 imaeq2 5462 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( `' f " x )  =  ( `' f
" (/) ) )
7 ima0 5481 . . . . . . . . . . 11  |-  ( `' f " (/) )  =  (/)
86, 7syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( `' f " x )  =  (/) )
98eleq1d 2686 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( `' f " x
)  e.  J  <->  (/)  e.  J
) )
105, 9syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  (/)  ->  ( `' f "
x )  e.  J
) )
11 fimacnv 6347 . . . . . . . . . . 11  |-  ( f : X --> A  -> 
( `' f " A )  =  X )
1211adantl 482 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  =  X )
13 toponmax 20730 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1413ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  X  e.  J )
1512, 14eqeltrd 2701 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  e.  J
)
16 imaeq2 5462 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `' f " x
)  =  ( `' f " A ) )
1716eleq1d 2686 . . . . . . . . 9  |-  ( x  =  A  ->  (
( `' f "
x )  e.  J  <->  ( `' f " A
)  e.  J ) )
1815, 17syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  A  ->  ( `' f
" x )  e.  J ) )
1910, 18jaod 395 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( ( x  =  (/)  \/  x  =  A )  ->  ( `' f " x )  e.  J ) )
201, 19syl5 34 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  e.  { (/)
,  A }  ->  ( `' f " x
)  e.  J ) )
2120ralrimiv 2965 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J )
2221ex 450 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J ) )
2322pm4.71d 666 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
24 id 22 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
25 elmapg 7870 . . . 4  |-  ( ( A  e.  V  /\  X  e.  J )  ->  ( f  e.  ( A  ^m  X )  <-> 
f : X --> A ) )
2624, 13, 25syl2anr 495 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( A  ^m  X )  <->  f : X
--> A ) )
27 indistopon 20805 . . . 4  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
28 iscn 21039 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  { (/)
,  A }  e.  (TopOn `  A ) )  ->  ( f  e.  ( J  Cn  { (/)
,  A } )  <-> 
( f : X --> A  /\  A. x  e. 
{ (/) ,  A } 
( `' f "
x )  e.  J
) ) )
2927, 28sylan2 491 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
3023, 26, 293bitr4rd 301 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  f  e.  ( A  ^m  X ) ) )
3130eqrdv 2620 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915   {cpr 4179   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Topctop 20698  TopOnctopon 20715    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  indishmph  21601  indistgp  21904  indispconn  31216
  Copyright terms: Public domain W3C validator