MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   Unicode version

Theorem indishmph 21601
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph  |-  ( A 
~~  B  ->  { (/) ,  A }  ~=  { (/)
,  B } )

Proof of Theorem indishmph
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 7964 . 2  |-  ( A 
~~  B  <->  E. f 
f : A -1-1-onto-> B )
2 f1of 6137 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  f : A
--> B )
3 f1odm 6141 . . . . . . . . . 10  |-  ( f : A -1-1-onto-> B  ->  dom  f  =  A )
4 vex 3203 . . . . . . . . . . 11  |-  f  e. 
_V
54dmex 7099 . . . . . . . . . 10  |-  dom  f  e.  _V
63, 5syl6eqelr 2710 . . . . . . . . 9  |-  ( f : A -1-1-onto-> B  ->  A  e.  _V )
7 f1ofo 6144 . . . . . . . . 9  |-  ( f : A -1-1-onto-> B  ->  f : A -onto-> B )
8 fornex 7135 . . . . . . . . 9  |-  ( A  e.  _V  ->  (
f : A -onto-> B  ->  B  e.  _V )
)
96, 7, 8sylc 65 . . . . . . . 8  |-  ( f : A -1-1-onto-> B  ->  B  e.  _V )
109, 6elmapd 7871 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  ( f  e.  ( B  ^m  A
)  <->  f : A --> B ) )
112, 10mpbird 247 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  f  e.  ( B  ^m  A ) )
12 indistopon 20805 . . . . . . . 8  |-  ( A  e.  _V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
136, 12syl 17 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  { (/) ,  A }  e.  (TopOn `  A
) )
14 cnindis 21096 . . . . . . 7  |-  ( ( { (/) ,  A }  e.  (TopOn `  A )  /\  B  e.  _V )  ->  ( { (/) ,  A }  Cn  { (/)
,  B } )  =  ( B  ^m  A ) )
1513, 9, 14syl2anc 693 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  ( { (/)
,  A }  Cn  {
(/) ,  B }
)  =  ( B  ^m  A ) )
1611, 15eleqtrrd 2704 . . . . 5  |-  ( f : A -1-1-onto-> B  ->  f  e.  ( { (/) ,  A }  Cn  { (/) ,  B }
) )
17 f1ocnv 6149 . . . . . . . 8  |-  ( f : A -1-1-onto-> B  ->  `' f : B -1-1-onto-> A )
18 f1of 6137 . . . . . . . 8  |-  ( `' f : B -1-1-onto-> A  ->  `' f : B --> A )
1917, 18syl 17 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  `' f : B --> A )
206, 9elmapd 7871 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  ( `' f  e.  ( A  ^m  B )  <->  `' f : B --> A ) )
2119, 20mpbird 247 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  `' f  e.  ( A  ^m  B
) )
22 indistopon 20805 . . . . . . . 8  |-  ( B  e.  _V  ->  { (/) ,  B }  e.  (TopOn `  B ) )
239, 22syl 17 . . . . . . 7  |-  ( f : A -1-1-onto-> B  ->  { (/) ,  B }  e.  (TopOn `  B
) )
24 cnindis 21096 . . . . . . 7  |-  ( ( { (/) ,  B }  e.  (TopOn `  B )  /\  A  e.  _V )  ->  ( { (/) ,  B }  Cn  { (/)
,  A } )  =  ( A  ^m  B ) )
2523, 6, 24syl2anc 693 . . . . . 6  |-  ( f : A -1-1-onto-> B  ->  ( { (/)
,  B }  Cn  {
(/) ,  A }
)  =  ( A  ^m  B ) )
2621, 25eleqtrrd 2704 . . . . 5  |-  ( f : A -1-1-onto-> B  ->  `' f  e.  ( { (/) ,  B }  Cn  { (/) ,  A } ) )
27 ishmeo 21562 . . . . 5  |-  ( f  e.  ( { (/) ,  A } Homeo { (/) ,  B } )  <->  ( f  e.  ( { (/) ,  A }  Cn  { (/) ,  B } )  /\  `' f  e.  ( { (/)
,  B }  Cn  {
(/) ,  A }
) ) )
2816, 26, 27sylanbrc 698 . . . 4  |-  ( f : A -1-1-onto-> B  ->  f  e.  ( { (/) ,  A } Homeo { (/) ,  B }
) )
29 hmphi 21580 . . . 4  |-  ( f  e.  ( { (/) ,  A } Homeo { (/) ,  B } )  ->  { (/) ,  A }  ~=  { (/) ,  B }
)
3028, 29syl 17 . . 3  |-  ( f : A -1-1-onto-> B  ->  { (/) ,  A }  ~=  { (/) ,  B } )
3130exlimiv 1858 . 2  |-  ( E. f  f : A -1-1-onto-> B  ->  { (/) ,  A }  ~=  { (/) ,  B }
)
321, 31sylbi 207 1  |-  ( A 
~~  B  ->  { (/) ,  A }  ~=  { (/)
,  B } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   (/)c0 3915   {cpr 4179   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ~~ cen 7952  TopOnctopon 20715    Cn ccn 21028   Homeochmeo 21556    ~= chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-en 7956  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558  df-hmph 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator