| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmpt2plusg | Structured version Visualization version Unicode version | ||
| Description: Continuity of the group
sum; analogue of cnmpt22f 21478 which cannot be used
directly because |
| Ref | Expression |
|---|---|
| tgpcn.j |
|
| cnmpt1plusg.p |
|
| cnmpt1plusg.g |
|
| cnmpt1plusg.k |
|
| cnmpt2plusg.l |
|
| cnmpt2plusg.a |
|
| cnmpt2plusg.b |
|
| Ref | Expression |
|---|---|
| cnmpt2plusg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1plusg.k |
. . . . . . . . . 10
| |
| 2 | cnmpt2plusg.l |
. . . . . . . . . 10
| |
| 3 | txtopon 21394 |
. . . . . . . . . 10
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . . . . 9
|
| 5 | cnmpt1plusg.g |
. . . . . . . . . 10
| |
| 6 | tgpcn.j |
. . . . . . . . . . 11
| |
| 7 | eqid 2622 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | tmdtopon 21885 |
. . . . . . . . . 10
|
| 9 | 5, 8 | syl 17 |
. . . . . . . . 9
|
| 10 | cnmpt2plusg.a |
. . . . . . . . 9
| |
| 11 | cnf2 21053 |
. . . . . . . . 9
| |
| 12 | 4, 9, 10, 11 | syl3anc 1326 |
. . . . . . . 8
|
| 13 | eqid 2622 |
. . . . . . . . 9
| |
| 14 | 13 | fmpt2 7237 |
. . . . . . . 8
|
| 15 | 12, 14 | sylibr 224 |
. . . . . . 7
|
| 16 | 15 | r19.21bi 2932 |
. . . . . 6
|
| 17 | 16 | r19.21bi 2932 |
. . . . 5
|
| 18 | 17 | 3impa 1259 |
. . . 4
|
| 19 | cnmpt2plusg.b |
. . . . . . . . 9
| |
| 20 | cnf2 21053 |
. . . . . . . . 9
| |
| 21 | 4, 9, 19, 20 | syl3anc 1326 |
. . . . . . . 8
|
| 22 | eqid 2622 |
. . . . . . . . 9
| |
| 23 | 22 | fmpt2 7237 |
. . . . . . . 8
|
| 24 | 21, 23 | sylibr 224 |
. . . . . . 7
|
| 25 | 24 | r19.21bi 2932 |
. . . . . 6
|
| 26 | 25 | r19.21bi 2932 |
. . . . 5
|
| 27 | 26 | 3impa 1259 |
. . . 4
|
| 28 | cnmpt1plusg.p |
. . . . 5
| |
| 29 | eqid 2622 |
. . . . 5
| |
| 30 | 7, 28, 29 | plusfval 17248 |
. . . 4
|
| 31 | 18, 27, 30 | syl2anc 693 |
. . 3
|
| 32 | 31 | mpt2eq3dva 6719 |
. 2
|
| 33 | 6, 29 | tmdcn 21887 |
. . . 4
|
| 34 | 5, 33 | syl 17 |
. . 3
|
| 35 | 1, 2, 10, 19, 34 | cnmpt22f 21478 |
. 2
|
| 36 | 32, 35 | eqeltrrd 2702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-plusf 17241 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-tx 21365 df-tmd 21876 |
| This theorem is referenced by: tgpsubcn 21894 oppgtmd 21901 prdstmdd 21927 cnmpt2mulr 21986 |
| Copyright terms: Public domain | W3C validator |