| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmdcn2 | Structured version Visualization version Unicode version | ||
| Description: Write out the definition
of continuity of |
| Ref | Expression |
|---|---|
| tmdcn2.1 |
|
| tmdcn2.2 |
|
| tmdcn2.3 |
|
| Ref | Expression |
|---|---|
| tmdcn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmdcn2.2 |
. . . . 5
| |
| 2 | tmdcn2.1 |
. . . . 5
| |
| 3 | 1, 2 | tmdtopon 21885 |
. . . 4
|
| 4 | 3 | ad2antrr 762 |
. . 3
|
| 5 | eqid 2622 |
. . . . . 6
| |
| 6 | 1, 5 | tmdcn 21887 |
. . . . 5
|
| 7 | 6 | ad2antrr 762 |
. . . 4
|
| 8 | simpr1 1067 |
. . . . . 6
| |
| 9 | simpr2 1068 |
. . . . . 6
| |
| 10 | opelxpi 5148 |
. . . . . 6
| |
| 11 | 8, 9, 10 | syl2anc 693 |
. . . . 5
|
| 12 | txtopon 21394 |
. . . . . . 7
| |
| 13 | 4, 4, 12 | syl2anc 693 |
. . . . . 6
|
| 14 | toponuni 20719 |
. . . . . 6
| |
| 15 | 13, 14 | syl 17 |
. . . . 5
|
| 16 | 11, 15 | eleqtrd 2703 |
. . . 4
|
| 17 | eqid 2622 |
. . . . 5
| |
| 18 | 17 | cncnpi 21082 |
. . . 4
|
| 19 | 7, 16, 18 | syl2anc 693 |
. . 3
|
| 20 | simplr 792 |
. . 3
| |
| 21 | tmdcn2.3 |
. . . . . 6
| |
| 22 | 2, 21, 5 | plusfval 17248 |
. . . . 5
|
| 23 | 8, 9, 22 | syl2anc 693 |
. . . 4
|
| 24 | simpr3 1069 |
. . . 4
| |
| 25 | 23, 24 | eqeltrd 2701 |
. . 3
|
| 26 | 4, 4, 19, 20, 8, 9, 25 | txcnpi 21411 |
. 2
|
| 27 | dfss3 3592 |
. . . . . . 7
| |
| 28 | eleq1 2689 |
. . . . . . . . 9
| |
| 29 | 2, 5 | plusffn 17250 |
. . . . . . . . . 10
|
| 30 | elpreima 6337 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | ax-mp 5 |
. . . . . . . . 9
|
| 32 | 28, 31 | syl6bb 276 |
. . . . . . . 8
|
| 33 | 32 | ralxp 5263 |
. . . . . . 7
|
| 34 | 27, 33 | bitri 264 |
. . . . . 6
|
| 35 | opelxp 5146 |
. . . . . . . . . 10
| |
| 36 | df-ov 6653 |
. . . . . . . . . . 11
| |
| 37 | 2, 21, 5 | plusfval 17248 |
. . . . . . . . . . 11
|
| 38 | 36, 37 | syl5eqr 2670 |
. . . . . . . . . 10
|
| 39 | 35, 38 | sylbi 207 |
. . . . . . . . 9
|
| 40 | 39 | eleq1d 2686 |
. . . . . . . 8
|
| 41 | 40 | biimpa 501 |
. . . . . . 7
|
| 42 | 41 | 2ralimi 2953 |
. . . . . 6
|
| 43 | 34, 42 | sylbi 207 |
. . . . 5
|
| 44 | 43 | 3anim3i 1250 |
. . . 4
|
| 45 | 44 | reximi 3011 |
. . 3
|
| 46 | 45 | reximi 3011 |
. 2
|
| 47 | 26, 46 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-plusf 17241 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-cnp 21032 df-tx 21365 df-tmd 21876 |
| This theorem is referenced by: tsmsxp 21958 |
| Copyright terms: Public domain | W3C validator |