![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpt2 | Structured version Visualization version Unicode version |
Description: Functionality, domain and range of a class given by the "maps to" notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpt2.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
fmpt2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt2.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | fmpt2x 7236 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | iunxpconst 5175 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | feq2i 6037 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 264 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 |
This theorem is referenced by: fnmpt2 7238 ovmpt2elrn 7241 fmpt2co 7260 eroprf 7845 omxpenlem 8061 mapxpen 8126 dffi3 8337 ixpiunwdom 8496 cantnfvalf 8562 iunfictbso 8937 axdc4lem 9277 axcclem 9279 addpqf 9766 mulpqf 9768 subf 10283 xaddf 12055 xmulf 12102 ixxf 12185 ioof 12271 fzf 12330 fzof 12467 axdc4uzlem 12782 sadcf 15175 smupf 15200 gcdf 15234 eucalgf 15296 vdwapf 15676 prdsval 16115 prdsplusg 16118 prdsmulr 16119 prdsvsca 16120 prdsds 16124 prdshom 16127 imasvscaf 16199 xpsff1o 16228 wunnat 16616 catcoppccl 16758 catcfuccl 16759 catcxpccl 16847 evlfcl 16862 hofcl 16899 plusffval 17247 mgmplusf 17251 grpsubf 17494 subgga 17733 lactghmga 17824 sylow1lem2 18014 sylow3lem1 18042 lsmssv 18058 lsmidm 18077 efgmf 18126 efgtf 18135 frgpuptf 18183 scaffval 18881 lmodscaf 18885 evlslem2 19512 xrsds 19789 ipffval 19993 phlipf 19997 mamucl 20207 matbas2d 20229 mamumat1cl 20245 ordtbas2 20995 iccordt 21018 txuni2 21368 xkotf 21388 txbasval 21409 tx1stc 21453 xkococn 21463 cnmpt12 21470 cnmpt21 21474 cnmpt2t 21476 cnmpt22 21477 cnmptcom 21481 cnmpt2k 21491 txswaphmeo 21608 xpstopnlem1 21612 cnmpt2plusg 21892 cnmpt2vsca 21998 prdsdsf 22172 blfvalps 22188 blfps 22211 blf 22212 stdbdmet 22321 met2ndci 22327 dscmet 22377 xrsxmet 22612 cnmpt2ds 22646 cnmpt2pc 22727 iimulcn 22737 ishtpy 22771 reparphti 22797 cnmpt2ip 23047 bcthlem5 23125 rrxmet 23191 dyadf 23359 itg1addlem2 23464 mbfi1fseqlem1 23482 mbfi1fseqlem3 23484 mbfi1fseqlem4 23485 mbfi1fseqlem5 23486 cxpcn3 24489 sgmf 24871 midf 25668 grpodivf 27392 nvmf 27500 ipf 27568 hvsubf 27872 ofoprabco 29464 sitmf 30414 cvxsconn 31225 cvmlift2lem5 31289 uncf 33388 mblfinlem1 33446 mblfinlem2 33447 sdclem1 33539 metf1o 33551 rrnval 33626 rrnmet 33628 frmx 37478 frmy 37479 icof 39411 |
Copyright terms: Public domain | W3C validator |