| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem40 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fin23 9211. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem40.f |
|
| Ref | Expression |
|---|---|
| fin23lem40 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 7879 |
. . . 4
| |
| 2 | simpl 473 |
. . . . . 6
| |
| 3 | frn 6053 |
. . . . . . 7
| |
| 4 | 3 | ad2antrl 764 |
. . . . . 6
|
| 5 | fdm 6051 |
. . . . . . . . 9
| |
| 6 | peano1 7085 |
. . . . . . . . . 10
| |
| 7 | ne0i 3921 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | mp1i 13 |
. . . . . . . . 9
|
| 9 | 5, 8 | eqnetrd 2861 |
. . . . . . . 8
|
| 10 | dm0rn0 5342 |
. . . . . . . . 9
| |
| 11 | 10 | necon3bii 2846 |
. . . . . . . 8
|
| 12 | 9, 11 | sylib 208 |
. . . . . . 7
|
| 13 | 12 | ad2antrl 764 |
. . . . . 6
|
| 14 | ffn 6045 |
. . . . . . . . 9
| |
| 15 | 14 | ad2antrl 764 |
. . . . . . . 8
|
| 16 | sspss 3706 |
. . . . . . . . . . 11
| |
| 17 | fvex 6201 |
. . . . . . . . . . . . . 14
| |
| 18 | fvex 6201 |
. . . . . . . . . . . . . 14
| |
| 19 | 17, 18 | brcnv 5305 |
. . . . . . . . . . . . 13
|
| 20 | 17 | brrpss 6940 |
. . . . . . . . . . . . 13
|
| 21 | 19, 20 | bitri 264 |
. . . . . . . . . . . 12
|
| 22 | eqcom 2629 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | orbi12i 543 |
. . . . . . . . . . 11
|
| 24 | 16, 23 | sylbb2 228 |
. . . . . . . . . 10
|
| 25 | 24 | ralimi 2952 |
. . . . . . . . 9
|
| 26 | 25 | ad2antll 765 |
. . . . . . . 8
|
| 27 | porpss 6941 |
. . . . . . . . . 10
| |
| 28 | cnvpo 5673 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | mpbi 220 |
. . . . . . . . 9
|
| 30 | 29 | a1i 11 |
. . . . . . . 8
|
| 31 | sornom 9099 |
. . . . . . . 8
| |
| 32 | 15, 26, 30, 31 | syl3anc 1326 |
. . . . . . 7
|
| 33 | cnvso 5674 |
. . . . . . 7
| |
| 34 | 32, 33 | sylibr 224 |
. . . . . 6
|
| 35 | fin2i2 9140 |
. . . . . 6
| |
| 36 | 2, 4, 13, 34, 35 | syl22anc 1327 |
. . . . 5
|
| 37 | 36 | expr 643 |
. . . 4
|
| 38 | 1, 37 | sylan2 491 |
. . 3
|
| 39 | 38 | ralrimiva 2966 |
. 2
|
| 40 | fin23lem40.f |
. . 3
| |
| 41 | 40 | isfin3ds 9151 |
. 2
|
| 42 | 39, 41 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rpss 6937 df-om 7066 df-1st 7168 df-2nd 7169 df-map 7859 df-fin2 9108 |
| This theorem is referenced by: fin23 9211 |
| Copyright terms: Public domain | W3C validator |