| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvps | Structured version Visualization version Unicode version | ||
| Description: The converse of a poset
is a poset. In the general case
|
| Ref | Expression |
|---|---|
| cnvps |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5503 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | cnvco 5308 |
. . 3
| |
| 4 | pstr2 17205 |
. . . 4
| |
| 5 | cnvss 5294 |
. . . 4
| |
| 6 | 4, 5 | syl 17 |
. . 3
|
| 7 | 3, 6 | syl5eqssr 3650 |
. 2
|
| 8 | psrel 17203 |
. . . . . 6
| |
| 9 | dfrel2 5583 |
. . . . . 6
| |
| 10 | 8, 9 | sylib 208 |
. . . . 5
|
| 11 | 10 | ineq2d 3814 |
. . . 4
|
| 12 | incom 3805 |
. . . 4
| |
| 13 | 11, 12 | syl6eq 2672 |
. . 3
|
| 14 | psref2 17204 |
. . 3
| |
| 15 | relcnvfld 5666 |
. . . . 5
| |
| 16 | 8, 15 | syl 17 |
. . . 4
|
| 17 | 16 | reseq2d 5396 |
. . 3
|
| 18 | 13, 14, 17 | 3eqtrd 2660 |
. 2
|
| 19 | cnvexg 7112 |
. . 3
| |
| 20 | isps 17202 |
. . 3
| |
| 21 | 19, 20 | syl 17 |
. 2
|
| 22 | 2, 7, 18, 21 | mpbir3and 1245 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ps 17200 |
| This theorem is referenced by: cnvpsb 17213 cnvtsr 17222 ordtcnv 21005 xrge0iifhmeo 29982 |
| Copyright terms: Public domain | W3C validator |