| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtcnv | Structured version Visualization version Unicode version | ||
| Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordtcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . . . . 8
| |
| 2 | 1 | psrn 17209 |
. . . . . . 7
|
| 3 | 2 | eqcomd 2628 |
. . . . . 6
|
| 4 | 3 | sneqd 4189 |
. . . . 5
|
| 5 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 6 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 7 | 5, 6 | brcnv 5305 |
. . . . . . . . . . . 12
|
| 8 | 7 | a1i 11 |
. . . . . . . . . . 11
|
| 9 | 8 | notbid 308 |
. . . . . . . . . 10
|
| 10 | 3, 9 | rabeqbidv 3195 |
. . . . . . . . 9
|
| 11 | 3, 10 | mpteq12dv 4733 |
. . . . . . . 8
|
| 12 | 11 | rneqd 5353 |
. . . . . . 7
|
| 13 | 6, 5 | brcnv 5305 |
. . . . . . . . . . . 12
|
| 14 | 13 | a1i 11 |
. . . . . . . . . . 11
|
| 15 | 14 | notbid 308 |
. . . . . . . . . 10
|
| 16 | 3, 15 | rabeqbidv 3195 |
. . . . . . . . 9
|
| 17 | 3, 16 | mpteq12dv 4733 |
. . . . . . . 8
|
| 18 | 17 | rneqd 5353 |
. . . . . . 7
|
| 19 | 12, 18 | uneq12d 3768 |
. . . . . 6
|
| 20 | uncom 3757 |
. . . . . 6
| |
| 21 | 19, 20 | syl6eq 2672 |
. . . . 5
|
| 22 | 4, 21 | uneq12d 3768 |
. . . 4
|
| 23 | 22 | fveq2d 6195 |
. . 3
|
| 24 | 23 | fveq2d 6195 |
. 2
|
| 25 | cnvps 17212 |
. . 3
| |
| 26 | df-rn 5125 |
. . . 4
| |
| 27 | eqid 2622 |
. . . 4
| |
| 28 | eqid 2622 |
. . . 4
| |
| 29 | 26, 27, 28 | ordtval 20993 |
. . 3
|
| 30 | 25, 29 | syl 17 |
. 2
|
| 31 | eqid 2622 |
. . 3
| |
| 32 | eqid 2622 |
. . 3
| |
| 33 | 1, 31, 32 | ordtval 20993 |
. 2
|
| 34 | 24, 30, 33 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ordt 16161 df-ps 17200 |
| This theorem is referenced by: ordtrest2 21008 cnvordtrestixx 29959 |
| Copyright terms: Public domain | W3C validator |