MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   Unicode version

Theorem ordtcnv 21005
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  (ordTop `  R ) )

Proof of Theorem ordtcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . . 8  |-  dom  R  =  dom  R
21psrn 17209 . . . . . . 7  |-  ( R  e.  PosetRel  ->  dom  R  =  ran  R )
32eqcomd 2628 . . . . . 6  |-  ( R  e.  PosetRel  ->  ran  R  =  dom  R )
43sneqd 4189 . . . . 5  |-  ( R  e.  PosetRel  ->  { ran  R }  =  { dom  R } )
5 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
6 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
75, 6brcnv 5305 . . . . . . . . . . . 12  |-  ( y `' R x  <->  x R
y )
87a1i 11 . . . . . . . . . . 11  |-  ( R  e.  PosetRel  ->  ( y `' R x  <->  x R
y ) )
98notbid 308 . . . . . . . . . 10  |-  ( R  e.  PosetRel  ->  ( -.  y `' R x  <->  -.  x R y ) )
103, 9rabeqbidv 3195 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  { y  e. 
ran  R  |  -.  y `' R x }  =  { y  e.  dom  R  |  -.  x R y } )
113, 10mpteq12dv 4733 . . . . . . . 8  |-  ( R  e.  PosetRel  ->  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ( x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) )
1211rneqd 5353 . . . . . . 7  |-  ( R  e.  PosetRel  ->  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  x R y } ) )
136, 5brcnv 5305 . . . . . . . . . . . 12  |-  ( x `' R y  <->  y R x )
1413a1i 11 . . . . . . . . . . 11  |-  ( R  e.  PosetRel  ->  ( x `' R y  <->  y R x ) )
1514notbid 308 . . . . . . . . . 10  |-  ( R  e.  PosetRel  ->  ( -.  x `' R y  <->  -.  y R x ) )
163, 15rabeqbidv 3195 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  { y  e. 
ran  R  |  -.  x `' R y }  =  { y  e.  dom  R  |  -.  y R x } )
173, 16mpteq12dv 4733 . . . . . . . 8  |-  ( R  e.  PosetRel  ->  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ( x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } ) )
1817rneqd 5353 . . . . . . 7  |-  ( R  e.  PosetRel  ->  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } ) )
1912, 18uneq12d 3768 . . . . . 6  |-  ( R  e.  PosetRel  ->  ( ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) )  =  ( ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
) ) )
20 uncom 3757 . . . . . 6  |-  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  x R y } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
) )  =  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) )
2119, 20syl6eq 2672 . . . . 5  |-  ( R  e.  PosetRel  ->  ( ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) )  =  ( ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) )
224, 21uneq12d 3768 . . . 4  |-  ( R  e.  PosetRel  ->  ( { ran  R }  u.  ( ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) ) )  =  ( { dom  R }  u.  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) )
2322fveq2d 6195 . . 3  |-  ( R  e.  PosetRel  ->  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) )  =  ( fi `  ( { dom  R }  u.  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) )
2423fveq2d 6195 . 2  |-  ( R  e.  PosetRel  ->  ( topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) ) ) ) )  =  ( topGen `  ( fi `  ( { dom  R }  u.  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) ) )
25 cnvps 17212 . . 3  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )
26 df-rn 5125 . . . 4  |-  ran  R  =  dom  `' R
27 eqid 2622 . . . 4  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )
28 eqid 2622 . . . 4  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } )
2926, 27, 28ordtval 20993 . . 3  |-  ( `' R  e.  PosetRel  ->  (ordTop `  `' R )  =  (
topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) ) ) )
3025, 29syl 17 . 2  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  ( topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) ) ) )
31 eqid 2622 . . 3  |-  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } )  =  ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)
32 eqid 2622 . . 3  |-  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } )  =  ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } )
331, 31, 32ordtval 20993 . 2  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  =  ( topGen `  ( fi `  ( { dom  R }  u.  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) ) )
3424, 30, 333eqtr4d 2666 1  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  (ordTop `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {crab 2916    u. cun 3572   {csn 4177   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   ` cfv 5888   ficfi 8316   topGenctg 16098  ordTopcordt 16159   PosetRelcps 17198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ordt 16161  df-ps 17200
This theorem is referenced by:  ordtrest2  21008  cnvordtrestixx  29959
  Copyright terms: Public domain W3C validator