MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  co02 Structured version   Visualization version   Unicode version

Theorem co02 5649
Description: Composition with the empty set. Theorem 20 of [Suppes] p. 63. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
co02  |-  ( A  o.  (/) )  =  (/)

Proof of Theorem co02
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . 2  |-  Rel  ( A  o.  (/) )
2 rel0 5243 . 2  |-  Rel  (/)
3 br0 4701 . . . . . 6  |-  -.  x (/) z
43intnanr 961 . . . . 5  |-  -.  (
x (/) z  /\  z A y )
54nex 1731 . . . 4  |-  -.  E. z ( x (/) z  /\  z A y )
6 vex 3203 . . . . 5  |-  x  e. 
_V
7 vex 3203 . . . . 5  |-  y  e. 
_V
86, 7opelco 5293 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  E. z
( x (/) z  /\  z A y ) )
95, 8mtbir 313 . . 3  |-  -.  <. x ,  y >.  e.  ( A  o.  (/) )
10 noel 3919 . . 3  |-  -.  <. x ,  y >.  e.  (/)
119, 102false 365 . 2  |-  ( <.
x ,  y >.  e.  ( A  o.  (/) )  <->  <. x ,  y >.  e.  (/) )
121, 2, 11eqrelriiv 5214 1  |-  ( A  o.  (/) )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   (/)c0 3915   <.cop 4183   class class class wbr 4653    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-co 5123
This theorem is referenced by:  co01  5650  gsumwmhm  17382  frmdgsum  17399  frmdup1  17401  efginvrel2  18140  0frgp  18192  evl1fval  19692  utop2nei  22054  tngds  22452  mrsub0  31413  dfpo2  31645  cononrel1  37900
  Copyright terms: Public domain W3C validator