MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwmhm Structured version   Visualization version   Unicode version

Theorem gsumwmhm 17382
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
2 eqid 2622 . . . . . 6  |-  ( 0g
`  M )  =  ( 0g `  M
)
32gsum0 17278 . . . . 5  |-  ( M 
gsumg  (/) )  =  ( 0g
`  M )
41, 3syl6eq 2672 . . . 4  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( 0g `  M ) )
54fveq2d 6195 . . 3  |-  ( W  =  (/)  ->  ( H `
 ( M  gsumg  W ) )  =  ( H `
 ( 0g `  M ) ) )
6 coeq2 5280 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
7 co02 5649 . . . . . 6  |-  ( H  o.  (/) )  =  (/)
86, 7syl6eq 2672 . . . . 5  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
98oveq2d 6666 . . . 4  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
10 eqid 2622 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
1110gsum0 17278 . . . 4  |-  ( N 
gsumg  (/) )  =  ( 0g
`  N )
129, 11syl6eq 2672 . . 3  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
135, 12eqeq12d 2637 . 2  |-  ( W  =  (/)  ->  ( ( H `  ( M 
gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) )  <->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) ) )
14 mhmrcl1 17338 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
1514ad2antrr 762 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
16 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
17 eqid 2622 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
1816, 17mndcl 17301 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
19183expb 1266 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2015, 19sylan 488 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
21 wrdf 13310 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ (
# `  W )
) --> B )
2221ad2antlr 763 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ (
# `  W )
) --> B )
23 wrdfin 13323 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
2423adantl 482 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
25 hashnncl 13157 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
2726biimpar 502 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  NN )
2827nnzd 11481 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( # `  W )  e.  ZZ )
29 fzoval 12471 . . . . . . . 8  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
3028, 29syl 17 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
3130feq2d 6031 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( # `  W
) ) --> B  <->  W :
( 0 ... (
( # `  W )  -  1 ) ) --> B ) )
3222, 31mpbid 222 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )
3332ffvelrnda 6359 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( W `  x )  e.  B
)
34 nnm1nn0 11334 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
3527, 34syl 17 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  NN0 )
36 nn0uz 11722 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
3735, 36syl6eleq 2711 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( # `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
38 simpll 790 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H  e.  ( M MndHom  N ) )
39 eqid 2622 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4016, 17, 39mhmlin 17342 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
41403expb 1266 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
4238, 41sylan 488 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
43 ffn 6045 . . . . . . 7  |-  ( W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B  ->  W  Fn  ( 0 ... (
( # `  W )  -  1 ) ) )
4432, 43syl 17 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( # `  W )  -  1 ) ) )
45 fvco2 6273 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( # `  W )  -  1 ) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4644, 45sylan 488 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
4746eqcomd 2628 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( # `  W )  -  1 ) ) )  ->  ( H `  ( W `  x
) )  =  ( ( H  o.  W
) `  x )
)
4820, 33, 37, 42, 47seqhomo 12848 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) )  =  (  seq 0
( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( # `  W )  -  1 ) ) )
4916, 17, 15, 37, 32gsumval2 17280 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( # `  W
)  -  1 ) ) )
5049fveq2d 6195 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( # `
 W )  - 
1 ) ) ) )
51 eqid 2622 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
52 mhmrcl2 17339 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
5352ad2antrr 762 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
5416, 51mhmf 17340 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
5554ad2antrr 762 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
56 fco 6058 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( # `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5755, 32, 56syl2anc 693 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( # `  W )  -  1 ) ) --> ( Base `  N ) )
5851, 39, 53, 37, 57gsumval2 17280 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( # `  W
)  -  1 ) ) )
5948, 50, 583eqtr4d 2666 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
602, 10mhm0 17343 . . 3  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
6160adantr 481 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( 0g `  M ) )  =  ( 0g `  N
) )
6213, 59, 61pm2.61ne 2879 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465    seqcseq 12801   #chash 13117  Word cword 13291   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   MndHom cmhm 17333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335
This theorem is referenced by:  frmdup3lem  17403  symgtrinv  17892  frgpup3lem  18190
  Copyright terms: Public domain W3C validator