MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdgsum Structured version   Visualization version   Unicode version

Theorem frmdgsum 17399
Description: Any word in a free monoid can be expressed as the sum of the singletons composing it. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdmnd.m  |-  M  =  (freeMnd `  I )
frmdgsum.u  |-  U  =  (varFMnd `  I )
Assertion
Ref Expression
frmdgsum  |-  ( ( I  e.  V  /\  W  e. Word  I )  ->  ( M  gsumg  ( U  o.  W
) )  =  W )

Proof of Theorem frmdgsum
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coeq2 5280 . . . . . . 7  |-  ( x  =  (/)  ->  ( U  o.  x )  =  ( U  o.  (/) ) )
2 co02 5649 . . . . . . 7  |-  ( U  o.  (/) )  =  (/)
31, 2syl6eq 2672 . . . . . 6  |-  ( x  =  (/)  ->  ( U  o.  x )  =  (/) )
43oveq2d 6666 . . . . 5  |-  ( x  =  (/)  ->  ( M 
gsumg  ( U  o.  x
) )  =  ( M  gsumg  (/) ) )
5 id 22 . . . . 5  |-  ( x  =  (/)  ->  x  =  (/) )
64, 5eqeq12d 2637 . . . 4  |-  ( x  =  (/)  ->  ( ( M  gsumg  ( U  o.  x
) )  =  x  <-> 
( M  gsumg  (/) )  =  (/) ) )
76imbi2d 330 . . 3  |-  ( x  =  (/)  ->  ( ( I  e.  V  -> 
( M  gsumg  ( U  o.  x
) )  =  x )  <->  ( I  e.  V  ->  ( M  gsumg  (/) )  =  (/) ) ) )
8 coeq2 5280 . . . . . 6  |-  ( x  =  y  ->  ( U  o.  x )  =  ( U  o.  y ) )
98oveq2d 6666 . . . . 5  |-  ( x  =  y  ->  ( M  gsumg  ( U  o.  x
) )  =  ( M  gsumg  ( U  o.  y
) ) )
10 id 22 . . . . 5  |-  ( x  =  y  ->  x  =  y )
119, 10eqeq12d 2637 . . . 4  |-  ( x  =  y  ->  (
( M  gsumg  ( U  o.  x
) )  =  x  <-> 
( M  gsumg  ( U  o.  y
) )  =  y ) )
1211imbi2d 330 . . 3  |-  ( x  =  y  ->  (
( I  e.  V  ->  ( M  gsumg  ( U  o.  x
) )  =  x )  <->  ( I  e.  V  ->  ( M  gsumg  ( U  o.  y ) )  =  y ) ) )
13 coeq2 5280 . . . . . 6  |-  ( x  =  ( y ++  <" z "> )  ->  ( U  o.  x
)  =  ( U  o.  ( y ++  <" z "> )
) )
1413oveq2d 6666 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  ( M  gsumg  ( U  o.  x
) )  =  ( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) ) )
15 id 22 . . . . 5  |-  ( x  =  ( y ++  <" z "> )  ->  x  =  ( y ++ 
<" z "> ) )
1614, 15eqeq12d 2637 . . . 4  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( M  gsumg  ( U  o.  x ) )  =  x  <->  ( M  gsumg  ( U  o.  ( y ++ 
<" z "> ) ) )  =  ( y ++  <" z "> ) ) )
1716imbi2d 330 . . 3  |-  ( x  =  ( y ++  <" z "> )  ->  ( ( I  e.  V  ->  ( M  gsumg  ( U  o.  x ) )  =  x )  <-> 
( I  e.  V  ->  ( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) )  =  ( y ++  <" z "> )
) ) )
18 coeq2 5280 . . . . . 6  |-  ( x  =  W  ->  ( U  o.  x )  =  ( U  o.  W ) )
1918oveq2d 6666 . . . . 5  |-  ( x  =  W  ->  ( M  gsumg  ( U  o.  x
) )  =  ( M  gsumg  ( U  o.  W
) ) )
20 id 22 . . . . 5  |-  ( x  =  W  ->  x  =  W )
2119, 20eqeq12d 2637 . . . 4  |-  ( x  =  W  ->  (
( M  gsumg  ( U  o.  x
) )  =  x  <-> 
( M  gsumg  ( U  o.  W
) )  =  W ) )
2221imbi2d 330 . . 3  |-  ( x  =  W  ->  (
( I  e.  V  ->  ( M  gsumg  ( U  o.  x
) )  =  x )  <->  ( I  e.  V  ->  ( M  gsumg  ( U  o.  W ) )  =  W ) ) )
23 frmdmnd.m . . . . . 6  |-  M  =  (freeMnd `  I )
2423frmd0 17397 . . . . 5  |-  (/)  =  ( 0g `  M )
2524gsum0 17278 . . . 4  |-  ( M 
gsumg  (/) )  =  (/)
2625a1i 11 . . 3  |-  ( I  e.  V  ->  ( M  gsumg  (/) )  =  (/) )
27 oveq1 6657 . . . . . 6  |-  ( ( M  gsumg  ( U  o.  y
) )  =  y  ->  ( ( M 
gsumg  ( U  o.  y
) ) ++  <" z "> )  =  ( y ++  <" z "> ) )
28 simprl 794 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  y  e. Word  I )
29 simprr 796 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  z  e.  I )
3029s1cld 13383 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  <" z ">  e. Word  I )
31 frmdgsum.u . . . . . . . . . . . . 13  |-  U  =  (varFMnd `  I )
3231vrmdf 17395 . . . . . . . . . . . 12  |-  ( I  e.  V  ->  U : I -->Word  I )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  U : I -->Word  I )
34 ccatco 13581 . . . . . . . . . . 11  |-  ( ( y  e. Word  I  /\  <" z ">  e. Word  I  /\  U :
I -->Word  I )  ->  ( U  o.  ( y ++  <" z "> ) )  =  ( ( U  o.  y
) ++  ( U  o.  <" z "> ) ) )
3528, 30, 33, 34syl3anc 1326 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  ( y ++  <" z "> ) )  =  ( ( U  o.  y
) ++  ( U  o.  <" z "> ) ) )
36 s1co 13579 . . . . . . . . . . . . 13  |-  ( ( z  e.  I  /\  U : I -->Word  I )  ->  ( U  o.  <" z "> )  =  <" ( U `
 z ) "> )
3729, 33, 36syl2anc 693 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  <" z "> )  =  <" ( U `  z
) "> )
3831vrmdval 17394 . . . . . . . . . . . . . 14  |-  ( ( I  e.  V  /\  z  e.  I )  ->  ( U `  z
)  =  <" z "> )
3938adantrl 752 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U `  z )  =  <" z "> )
4039s1eqd 13381 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  <" ( U `  z ) ">  =  <" <" z "> "> )
4137, 40eqtrd 2656 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  <" z "> )  =  <" <" z "> "> )
4241oveq2d 6666 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( U  o.  y
) ++  ( U  o.  <" z "> ) )  =  ( ( U  o.  y
) ++  <" <" z "> "> )
)
4335, 42eqtrd 2656 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  ( y ++  <" z "> ) )  =  ( ( U  o.  y
) ++  <" <" z "> "> )
)
4443oveq2d 6666 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) )  =  ( M  gsumg  ( ( U  o.  y ) ++ 
<" <" z "> "> )
) )
4523frmdmnd 17396 . . . . . . . . . . 11  |-  ( I  e.  V  ->  M  e.  Mnd )
4645adantr 481 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  M  e.  Mnd )
47 wrdco 13577 . . . . . . . . . . . 12  |-  ( ( y  e. Word  I  /\  U : I -->Word  I )  ->  ( U  o.  y
)  e. Word Word  I )
4828, 33, 47syl2anc 693 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  y )  e. Word Word  I )
49 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  M )  =  (
Base `  M )
5023, 49frmdbas 17389 . . . . . . . . . . . . 13  |-  ( I  e.  V  ->  ( Base `  M )  = Word 
I )
5150adantr 481 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( Base `  M )  = Word 
I )
52 wrdeq 13327 . . . . . . . . . . . 12  |-  ( (
Base `  M )  = Word  I  -> Word  ( Base `  M
)  = Word Word  I )
5351, 52syl 17 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  -> Word  ( Base `  M )  = Word Word  I )
5448, 53eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( U  o.  y )  e. Word  ( Base `  M
) )
5530, 51eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  <" z ">  e.  ( Base `  M ) )
5655s1cld 13383 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  <" <" z "> ">  e. Word  ( Base `  M
) )
57 eqid 2622 . . . . . . . . . . 11  |-  ( +g  `  M )  =  ( +g  `  M )
5849, 57gsumccat 17378 . . . . . . . . . 10  |-  ( ( M  e.  Mnd  /\  ( U  o.  y
)  e. Word  ( Base `  M )  /\  <" <" z "> ">  e. Word  (
Base `  M )
)  ->  ( M  gsumg  ( ( U  o.  y
) ++  <" <" z "> "> )
)  =  ( ( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) ( M 
gsumg  <" <" z "> "> )
) )
5946, 54, 56, 58syl3anc 1326 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg  ( ( U  o.  y ) ++  <" <" z "> "> ) )  =  ( ( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) ( M 
gsumg  <" <" z "> "> )
) )
6049gsumws1 17376 . . . . . . . . . . . 12  |-  ( <" z ">  e.  ( Base `  M
)  ->  ( M  gsumg  <" <" z "> "> )  =  <" z "> )
6155, 60syl 17 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg 
<" <" z "> "> )  =  <" z "> )
6261oveq2d 6666 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) ( M 
gsumg  <" <" z "> "> )
)  =  ( ( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) <" z "> ) )
6349gsumwcl 17377 . . . . . . . . . . . 12  |-  ( ( M  e.  Mnd  /\  ( U  o.  y
)  e. Word  ( Base `  M ) )  -> 
( M  gsumg  ( U  o.  y
) )  e.  (
Base `  M )
)
6446, 54, 63syl2anc 693 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg  ( U  o.  y
) )  e.  (
Base `  M )
)
6523, 49, 57frmdadd 17392 . . . . . . . . . . 11  |-  ( ( ( M  gsumg  ( U  o.  y
) )  e.  (
Base `  M )  /\  <" z ">  e.  ( Base `  M ) )  -> 
( ( M  gsumg  ( U  o.  y ) ) ( +g  `  M
) <" z "> )  =  ( ( M  gsumg  ( U  o.  y
) ) ++  <" z "> ) )
6664, 55, 65syl2anc 693 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) <" z "> )  =  ( ( M  gsumg  ( U  o.  y
) ) ++  <" z "> ) )
6762, 66eqtrd 2656 . . . . . . . . 9  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( M  gsumg  ( U  o.  y
) ) ( +g  `  M ) ( M 
gsumg  <" <" z "> "> )
)  =  ( ( M  gsumg  ( U  o.  y
) ) ++  <" z "> ) )
6859, 67eqtrd 2656 . . . . . . . 8  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg  ( ( U  o.  y ) ++  <" <" z "> "> ) )  =  ( ( M  gsumg  ( U  o.  y
) ) ++  <" z "> ) )
6944, 68eqtrd 2656 . . . . . . 7  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  ( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) )  =  ( ( M 
gsumg  ( U  o.  y
) ) ++  <" z "> ) )
7069eqeq1d 2624 . . . . . 6  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) )  =  ( y ++  <" z "> )  <->  ( ( M  gsumg  ( U  o.  y
) ) ++  <" z "> )  =  ( y ++  <" z "> ) ) )
7127, 70syl5ibr 236 . . . . 5  |-  ( ( I  e.  V  /\  ( y  e. Word  I  /\  z  e.  I
) )  ->  (
( M  gsumg  ( U  o.  y
) )  =  y  ->  ( M  gsumg  ( U  o.  ( y ++  <" z "> )
) )  =  ( y ++  <" z "> ) ) )
7271expcom 451 . . . 4  |-  ( ( y  e. Word  I  /\  z  e.  I )  ->  ( I  e.  V  ->  ( ( M  gsumg  ( U  o.  y ) )  =  y  ->  ( M  gsumg  ( U  o.  (
y ++  <" z "> ) ) )  =  ( y ++  <" z "> )
) ) )
7372a2d 29 . . 3  |-  ( ( y  e. Word  I  /\  z  e.  I )  ->  ( ( I  e.  V  ->  ( M  gsumg  ( U  o.  y ) )  =  y )  ->  ( I  e.  V  ->  ( M  gsumg  ( U  o.  ( y ++ 
<" z "> ) ) )  =  ( y ++  <" z "> ) ) ) )
747, 12, 17, 22, 26, 73wrdind 13476 . 2  |-  ( W  e. Word  I  ->  (
I  e.  V  -> 
( M  gsumg  ( U  o.  W
) )  =  W ) )
7574impcom 446 1  |-  ( ( I  e.  V  /\  W  e. Word  I )  ->  ( M  gsumg  ( U  o.  W
) )  =  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   (/)c0 3915    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650  Word cword 13291   ++ cconcat 13293   <"cs1 13294   Basecbs 15857   +g cplusg 15941    gsumg cgsu 16101   Mndcmnd 17294  freeMndcfrmd 17384  varFMndcvrmd 17385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-frmd 17386  df-vrmd 17387
This theorem is referenced by:  frmdss2  17400  frmdup3lem  17403  frgpup3lem  18190
  Copyright terms: Public domain W3C validator