| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1fval | Structured version Visualization version Unicode version | ||
| Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| evl1fval.o |
|
| evl1fval.q |
|
| evl1fval.b |
|
| Ref | Expression |
|---|---|
| evl1fval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval.o |
. . 3
| |
| 2 | fvexd 6203 |
. . . . 5
| |
| 3 | id 22 |
. . . . . . . . 9
| |
| 4 | fveq2 6191 |
. . . . . . . . . 10
| |
| 5 | evl1fval.b |
. . . . . . . . . 10
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . . . . 9
|
| 7 | 3, 6 | sylan9eqr 2678 |
. . . . . . . 8
|
| 8 | 7 | oveq1d 6665 |
. . . . . . . 8
|
| 9 | 7, 8 | oveq12d 6668 |
. . . . . . 7
|
| 10 | 7 | mpteq1d 4738 |
. . . . . . . 8
|
| 11 | 10 | coeq2d 5284 |
. . . . . . 7
|
| 12 | 9, 11 | mpteq12dv 4733 |
. . . . . 6
|
| 13 | simpl 473 |
. . . . . . . 8
| |
| 14 | 13 | oveq2d 6666 |
. . . . . . 7
|
| 15 | evl1fval.q |
. . . . . . 7
| |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . 6
|
| 17 | 12, 16 | coeq12d 5286 |
. . . . 5
|
| 18 | 2, 17 | csbied 3560 |
. . . 4
|
| 19 | df-evl1 19681 |
. . . 4
| |
| 20 | ovex 6678 |
. . . . . 6
| |
| 21 | 20 | mptex 6486 |
. . . . 5
|
| 22 | ovex 6678 |
. . . . . 6
| |
| 23 | 15, 22 | eqeltri 2697 |
. . . . 5
|
| 24 | 21, 23 | coex 7118 |
. . . 4
|
| 25 | 18, 19, 24 | fvmpt 6282 |
. . 3
|
| 26 | 1, 25 | syl5eq 2668 |
. 2
|
| 27 | fvprc 6185 |
. . . . 5
| |
| 28 | 1, 27 | syl5eq 2668 |
. . . 4
|
| 29 | co02 5649 |
. . . 4
| |
| 30 | 28, 29 | syl6eqr 2674 |
. . 3
|
| 31 | df-evl 19507 |
. . . . . . 7
| |
| 32 | 31 | reldmmpt2 6771 |
. . . . . 6
|
| 33 | 32 | ovprc2 6685 |
. . . . 5
|
| 34 | 15, 33 | syl5eq 2668 |
. . . 4
|
| 35 | 34 | coeq2d 5284 |
. . 3
|
| 36 | 30, 35 | eqtr4d 2659 |
. 2
|
| 37 | 26, 36 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-evl 19507 df-evl1 19681 |
| This theorem is referenced by: evl1val 19693 evl1fval1lem 19694 evl1rhm 19696 pf1rcl 19713 |
| Copyright terms: Public domain | W3C validator |