MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval Structured version   Visualization version   Unicode version

Theorem comfffval 16358
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval.o  |-  O  =  (compf `  C )
comfffval.b  |-  B  =  ( Base `  C
)
comfffval.h  |-  H  =  ( Hom  `  C
)
comfffval.x  |-  .x.  =  (comp `  C )
Assertion
Ref Expression
comfffval  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Distinct variable groups:    x, y, B    f, g, x, y, C    .x. , f, g, x   
f, H, g, x
Allowed substitution hints:    B( f, g)    .x. ( y)    H( y)    O( x, y, f, g)

Proof of Theorem comfffval
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 comfffval.o . 2  |-  O  =  (compf `  C )
2 fveq2 6191 . . . . . . 7  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
3 comfffval.b . . . . . . 7  |-  B  =  ( Base `  C
)
42, 3syl6eqr 2674 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  B )
54sqxpeqd 5141 . . . . 5  |-  ( c  =  C  ->  (
( Base `  c )  X.  ( Base `  c
) )  =  ( B  X.  B ) )
6 fveq2 6191 . . . . . . . 8  |-  ( c  =  C  ->  ( Hom  `  c )  =  ( Hom  `  C
) )
7 comfffval.h . . . . . . . 8  |-  H  =  ( Hom  `  C
)
86, 7syl6eqr 2674 . . . . . . 7  |-  ( c  =  C  ->  ( Hom  `  c )  =  H )
98oveqd 6667 . . . . . 6  |-  ( c  =  C  ->  (
( 2nd `  x
) ( Hom  `  c
) y )  =  ( ( 2nd `  x
) H y ) )
108fveq1d 6193 . . . . . 6  |-  ( c  =  C  ->  (
( Hom  `  c ) `
 x )  =  ( H `  x
) )
11 fveq2 6191 . . . . . . . . 9  |-  ( c  =  C  ->  (comp `  c )  =  (comp `  C ) )
12 comfffval.x . . . . . . . . 9  |-  .x.  =  (comp `  C )
1311, 12syl6eqr 2674 . . . . . . . 8  |-  ( c  =  C  ->  (comp `  c )  =  .x.  )
1413oveqd 6667 . . . . . . 7  |-  ( c  =  C  ->  (
x (comp `  c
) y )  =  ( x  .x.  y
) )
1514oveqd 6667 . . . . . 6  |-  ( c  =  C  ->  (
g ( x (comp `  c ) y ) f )  =  ( g ( x  .x.  y ) f ) )
169, 10, 15mpt2eq123dv 6717 . . . . 5  |-  ( c  =  C  ->  (
g  e.  ( ( 2nd `  x ) ( Hom  `  c
) y ) ,  f  e.  ( ( Hom  `  c ) `  x )  |->  ( g ( x (comp `  c ) y ) f ) )  =  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
175, 4, 16mpt2eq123dv 6717 . . . 4  |-  ( c  =  C  ->  (
x  e.  ( (
Base `  c )  X.  ( Base `  c
) ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( ( 2nd `  x
) ( Hom  `  c
) y ) ,  f  e.  ( ( Hom  `  c ) `  x )  |->  ( g ( x (comp `  c ) y ) f ) ) )  =  ( x  e.  ( B  X.  B
) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
18 df-comf 16332 . . . 4  |- compf  =  ( c  e. 
_V  |->  ( x  e.  ( ( Base `  c
)  X.  ( Base `  c ) ) ,  y  e.  ( Base `  c )  |->  ( g  e.  ( ( 2nd `  x ) ( Hom  `  c ) y ) ,  f  e.  ( ( Hom  `  c
) `  x )  |->  ( g ( x (comp `  c )
y ) f ) ) ) )
19 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
203, 19eqeltri 2697 . . . . . 6  |-  B  e. 
_V
2120, 20xpex 6962 . . . . 5  |-  ( B  X.  B )  e. 
_V
2221, 20mpt2ex 7247 . . . 4  |-  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) )  e.  _V
2317, 18, 22fvmpt 6282 . . 3  |-  ( C  e.  _V  ->  (compf `  C
)  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) ) )
24 fvprc 6185 . . . 4  |-  ( -.  C  e.  _V  ->  (compf `  C )  =  (/) )
25 fvprc 6185 . . . . . . . . 9  |-  ( -.  C  e.  _V  ->  (
Base `  C )  =  (/) )
263, 25syl5eq 2668 . . . . . . . 8  |-  ( -.  C  e.  _V  ->  B  =  (/) )
2726xpeq2d 5139 . . . . . . 7  |-  ( -.  C  e.  _V  ->  ( B  X.  B )  =  ( B  X.  (/) ) )
28 xp0 5552 . . . . . . 7  |-  ( B  X.  (/) )  =  (/)
2927, 28syl6eq 2672 . . . . . 6  |-  ( -.  C  e.  _V  ->  ( B  X.  B )  =  (/) )
30 mpt2eq12 6715 . . . . . 6  |-  ( ( ( B  X.  B
)  =  (/)  /\  B  =  (/) )  ->  (
x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
3129, 26, 30syl2anc 693 . . . . 5  |-  ( -.  C  e.  _V  ->  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) ) )
32 mpt20 6725 . . . . 5  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )  =  (/)
3331, 32syl6eq 2672 . . . 4  |-  ( -.  C  e.  _V  ->  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) )  =  (/) )
3424, 33eqtr4d 2659 . . 3  |-  ( -.  C  e.  _V  ->  (compf `  C )  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `
 x )  |->  ( g ( x  .x.  y ) f ) ) ) )
3523, 34pm2.61i 176 . 2  |-  (compf `  C
)  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x ) H y ) ,  f  e.  ( H `  x
)  |->  ( g ( x  .x.  y ) f ) ) )
361, 35eqtri 2644 1  |-  O  =  ( x  e.  ( B  X.  B ) ,  y  e.  B  |->  ( g  e.  ( ( 2nd `  x
) H y ) ,  f  e.  ( H `  x ) 
|->  ( g ( x 
.x.  y ) f ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   2ndc2nd 7167   Basecbs 15857   Hom chom 15952  compcco 15953  compfccomf 16328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-comf 16332
This theorem is referenced by:  comffval  16359  comfffval2  16361  comfffn  16364  comfeq  16366
  Copyright terms: Public domain W3C validator