| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cznrng | Structured version Visualization version Unicode version | ||
| Description: The ring constructed from a ℤ/nℤ structure by replacing the (multiplicative) ring operation by a constant operation is a non-unital ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| cznrng.y |
|
| cznrng.b |
|
| cznrng.x |
|
| cznrng.0 |
|
| Ref | Expression |
|---|---|
| cznrng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 11299 |
. . . . . 6
| |
| 2 | cznrng.y |
. . . . . . 7
| |
| 3 | 2 | zncrng 19893 |
. . . . . 6
|
| 4 | 1, 3 | syl 17 |
. . . . 5
|
| 5 | crngring 18558 |
. . . . . 6
| |
| 6 | cznrng.b |
. . . . . . . 8
| |
| 7 | cznrng.0 |
. . . . . . . 8
| |
| 8 | 6, 7 | ring0cl 18569 |
. . . . . . 7
|
| 9 | eleq1a 2696 |
. . . . . . 7
| |
| 10 | 8, 9 | syl 17 |
. . . . . 6
|
| 11 | 5, 10 | syl 17 |
. . . . 5
|
| 12 | 4, 11 | syl 17 |
. . . 4
|
| 13 | 12 | imp 445 |
. . 3
|
| 14 | cznrng.x |
. . . . . 6
| |
| 15 | 2, 6, 14 | cznabel 41954 |
. . . . 5
|
| 16 | 15 | adantlr 751 |
. . . 4
|
| 17 | eqid 2622 |
. . . . . 6
| |
| 18 | 2, 6, 14 | cznrnglem 41953 |
. . . . . 6
|
| 19 | 17, 18 | mgpbas 18495 |
. . . . 5
|
| 20 | 14 | fveq2i 6194 |
. . . . . . 7
|
| 21 | fvex 6201 |
. . . . . . . . 9
| |
| 22 | 2, 21 | eqeltri 2697 |
. . . . . . . 8
|
| 23 | fvex 6201 |
. . . . . . . . . 10
| |
| 24 | 6, 23 | eqeltri 2697 |
. . . . . . . . 9
|
| 25 | 24, 24 | mpt2ex 7247 |
. . . . . . . 8
|
| 26 | mulrid 15997 |
. . . . . . . . 9
| |
| 27 | 26 | setsid 15914 |
. . . . . . . 8
|
| 28 | 22, 25, 27 | mp2an 708 |
. . . . . . 7
|
| 29 | 20, 28 | mgpplusg 18493 |
. . . . . 6
|
| 30 | 29 | eqcomi 2631 |
. . . . 5
|
| 31 | ne0i 3921 |
. . . . . 6
| |
| 32 | 31 | adantl 482 |
. . . . 5
|
| 33 | simpr 477 |
. . . . 5
| |
| 34 | 19, 30, 32, 33 | copissgrp 41808 |
. . . 4
|
| 35 | oveq1 6657 |
. . . . . . . . 9
| |
| 36 | 35 | ad3antlr 767 |
. . . . . . . 8
|
| 37 | 4, 5 | syl 17 |
. . . . . . . . . . . . 13
|
| 38 | ringmnd 18556 |
. . . . . . . . . . . . 13
| |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . . 12
|
| 40 | 39 | adantr 481 |
. . . . . . . . . . 11
|
| 41 | 40 | anim1i 592 |
. . . . . . . . . 10
|
| 42 | 41 | adantr 481 |
. . . . . . . . 9
|
| 43 | eqid 2622 |
. . . . . . . . . 10
| |
| 44 | 6, 43, 7 | mndlid 17311 |
. . . . . . . . 9
|
| 45 | 42, 44 | syl 17 |
. . . . . . . 8
|
| 46 | 36, 45 | eqtrd 2656 |
. . . . . . 7
|
| 47 | eqidd 2623 |
. . . . . . . . 9
| |
| 48 | eqidd 2623 |
. . . . . . . . 9
| |
| 49 | simpr1 1067 |
. . . . . . . . 9
| |
| 50 | simpr2 1068 |
. . . . . . . . 9
| |
| 51 | 33 | adantr 481 |
. . . . . . . . 9
|
| 52 | 47, 48, 49, 50, 51 | ovmpt2d 6788 |
. . . . . . . 8
|
| 53 | eqidd 2623 |
. . . . . . . . 9
| |
| 54 | simpr3 1069 |
. . . . . . . . 9
| |
| 55 | 47, 53, 49, 54, 51 | ovmpt2d 6788 |
. . . . . . . 8
|
| 56 | 52, 55 | oveq12d 6668 |
. . . . . . 7
|
| 57 | eqidd 2623 |
. . . . . . . 8
| |
| 58 | 37 | ad3antrrr 766 |
. . . . . . . . 9
|
| 59 | 6, 43 | ringacl 18578 |
. . . . . . . . 9
|
| 60 | 58, 50, 54, 59 | syl3anc 1326 |
. . . . . . . 8
|
| 61 | 47, 57, 49, 60, 51 | ovmpt2d 6788 |
. . . . . . 7
|
| 62 | 46, 56, 61 | 3eqtr4rd 2667 |
. . . . . 6
|
| 63 | eqidd 2623 |
. . . . . . . . 9
| |
| 64 | 47, 63, 50, 54, 51 | ovmpt2d 6788 |
. . . . . . . 8
|
| 65 | 55, 64 | oveq12d 6668 |
. . . . . . 7
|
| 66 | eqidd 2623 |
. . . . . . . 8
| |
| 67 | 6, 43 | ringacl 18578 |
. . . . . . . . 9
|
| 68 | 58, 49, 50, 67 | syl3anc 1326 |
. . . . . . . 8
|
| 69 | 47, 66, 68, 54, 51 | ovmpt2d 6788 |
. . . . . . 7
|
| 70 | 46, 65, 69 | 3eqtr4rd 2667 |
. . . . . 6
|
| 71 | 62, 70 | jca 554 |
. . . . 5
|
| 72 | 71 | ralrimivvva 2972 |
. . . 4
|
| 73 | 16, 34, 72 | 3jca 1242 |
. . 3
|
| 74 | 13, 73 | mpdan 702 |
. 2
|
| 75 | plusgid 15977 |
. . . . 5
| |
| 76 | plusgndxnmulrndx 15998 |
. . . . 5
| |
| 77 | 75, 76 | setsnid 15915 |
. . . 4
|
| 78 | 14 | fveq2i 6194 |
. . . 4
|
| 79 | 77, 78 | eqtr4i 2647 |
. . 3
|
| 80 | 14 | eqcomi 2631 |
. . . . 5
|
| 81 | 80 | fveq2i 6194 |
. . . 4
|
| 82 | 28, 81 | eqtri 2644 |
. . 3
|
| 83 | 18, 17, 79, 82 | isrng 41876 |
. 2
|
| 84 | 74, 83 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-subg 17591 df-nsg 17592 df-eqg 17593 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zn 19855 df-rng0 41875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |