Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngohomfo Structured version   Visualization version   Unicode version

Theorem crngohomfo 33805
Description: The image of a homomorphism from a commutative ring is commutative. (Contributed by Jeff Madsen, 4-Jan-2011.)
Hypotheses
Ref Expression
crnghomfo.1  |-  G  =  ( 1st `  R
)
crnghomfo.2  |-  X  =  ran  G
crnghomfo.3  |-  J  =  ( 1st `  S
)
crnghomfo.4  |-  Y  =  ran  J
Assertion
Ref Expression
crngohomfo  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  ->  S  e. CRingOps )

Proof of Theorem crngohomfo
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . 2  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  ->  S  e.  RingOps )
2 foelrn 6378 . . . . . . . 8  |-  ( ( F : X -onto-> Y  /\  y  e.  Y
)  ->  E. w  e.  X  y  =  ( F `  w ) )
32ex 450 . . . . . . 7  |-  ( F : X -onto-> Y  -> 
( y  e.  Y  ->  E. w  e.  X  y  =  ( F `  w ) ) )
4 foelrn 6378 . . . . . . . 8  |-  ( ( F : X -onto-> Y  /\  z  e.  Y
)  ->  E. x  e.  X  z  =  ( F `  x ) )
54ex 450 . . . . . . 7  |-  ( F : X -onto-> Y  -> 
( z  e.  Y  ->  E. x  e.  X  z  =  ( F `  x ) ) )
63, 5anim12d 586 . . . . . 6  |-  ( F : X -onto-> Y  -> 
( ( y  e.  Y  /\  z  e.  Y )  ->  ( E. w  e.  X  y  =  ( F `  w )  /\  E. x  e.  X  z  =  ( F `  x ) ) ) )
7 reeanv 3107 . . . . . 6  |-  ( E. w  e.  X  E. x  e.  X  (
y  =  ( F `
 w )  /\  z  =  ( F `  x ) )  <->  ( E. w  e.  X  y  =  ( F `  w )  /\  E. x  e.  X  z  =  ( F `  x ) ) )
86, 7syl6ibr 242 . . . . 5  |-  ( F : X -onto-> Y  -> 
( ( y  e.  Y  /\  z  e.  Y )  ->  E. w  e.  X  E. x  e.  X  ( y  =  ( F `  w )  /\  z  =  ( F `  x ) ) ) )
98ad2antll 765 . . . 4  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  -> 
( ( y  e.  Y  /\  z  e.  Y )  ->  E. w  e.  X  E. x  e.  X  ( y  =  ( F `  w )  /\  z  =  ( F `  x ) ) ) )
10 crnghomfo.1 . . . . . . . . . . . . . 14  |-  G  =  ( 1st `  R
)
11 eqid 2622 . . . . . . . . . . . . . 14  |-  ( 2nd `  R )  =  ( 2nd `  R )
12 crnghomfo.2 . . . . . . . . . . . . . 14  |-  X  =  ran  G
1310, 11, 12crngocom 33800 . . . . . . . . . . . . 13  |-  ( ( R  e. CRingOps  /\  w  e.  X  /\  x  e.  X )  ->  (
w ( 2nd `  R
) x )  =  ( x ( 2nd `  R ) w ) )
14133expb 1266 . . . . . . . . . . . 12  |-  ( ( R  e. CRingOps  /\  (
w  e.  X  /\  x  e.  X )
)  ->  ( w
( 2nd `  R
) x )  =  ( x ( 2nd `  R ) w ) )
15143ad2antl1 1223 . . . . . . . . . . 11  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( w ( 2nd `  R ) x )  =  ( x ( 2nd `  R ) w ) )
1615fveq2d 6195 . . . . . . . . . 10  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( F `  (
w ( 2nd `  R
) x ) )  =  ( F `  ( x ( 2nd `  R ) w ) ) )
17 crngorngo 33799 . . . . . . . . . . 11  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
18 eqid 2622 . . . . . . . . . . . 12  |-  ( 2nd `  S )  =  ( 2nd `  S )
1910, 12, 11, 18rngohommul 33769 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( F `  (
w ( 2nd `  R
) x ) )  =  ( ( F `
 w ) ( 2nd `  S ) ( F `  x
) ) )
2017, 19syl3anl1 1374 . . . . . . . . . 10  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( F `  (
w ( 2nd `  R
) x ) )  =  ( ( F `
 w ) ( 2nd `  S ) ( F `  x
) ) )
2110, 12, 11, 18rngohommul 33769 . . . . . . . . . . . 12  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( x  e.  X  /\  w  e.  X ) )  -> 
( F `  (
x ( 2nd `  R
) w ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
2221ancom2s 844 . . . . . . . . . . 11  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( F `  (
x ( 2nd `  R
) w ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
2317, 22syl3anl1 1374 . . . . . . . . . 10  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( F `  (
x ( 2nd `  R
) w ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
2416, 20, 233eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( ( F `  w ) ( 2nd `  S ) ( F `
 x ) )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
25 oveq12 6659 . . . . . . . . . 10  |-  ( ( y  =  ( F `
 w )  /\  z  =  ( F `  x ) )  -> 
( y ( 2nd `  S ) z )  =  ( ( F `
 w ) ( 2nd `  S ) ( F `  x
) ) )
26 oveq12 6659 . . . . . . . . . . 11  |-  ( ( z  =  ( F `
 x )  /\  y  =  ( F `  w ) )  -> 
( z ( 2nd `  S ) y )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
2726ancoms 469 . . . . . . . . . 10  |-  ( ( y  =  ( F `
 w )  /\  z  =  ( F `  x ) )  -> 
( z ( 2nd `  S ) y )  =  ( ( F `
 x ) ( 2nd `  S ) ( F `  w
) ) )
2825, 27eqeq12d 2637 . . . . . . . . 9  |-  ( ( y  =  ( F `
 w )  /\  z  =  ( F `  x ) )  -> 
( ( y ( 2nd `  S ) z )  =  ( z ( 2nd `  S
) y )  <->  ( ( F `  w )
( 2nd `  S
) ( F `  x ) )  =  ( ( F `  x ) ( 2nd `  S ) ( F `
 w ) ) ) )
2924, 28syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( w  e.  X  /\  x  e.  X ) )  -> 
( ( y  =  ( F `  w
)  /\  z  =  ( F `  x ) )  ->  ( y
( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) )
3029ex 450 . . . . . . 7  |-  ( ( R  e. CRingOps  /\  S  e.  RingOps 
/\  F  e.  ( R  RngHom  S ) )  ->  ( ( w  e.  X  /\  x  e.  X )  ->  (
( y  =  ( F `  w )  /\  z  =  ( F `  x ) )  ->  ( y
( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) ) )
31303expa 1265 . . . . . 6  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  ( (
w  e.  X  /\  x  e.  X )  ->  ( ( y  =  ( F `  w
)  /\  z  =  ( F `  x ) )  ->  ( y
( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) ) )
3231adantrr 753 . . . . 5  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  -> 
( ( w  e.  X  /\  x  e.  X )  ->  (
( y  =  ( F `  w )  /\  z  =  ( F `  x ) )  ->  ( y
( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) ) )
3332rexlimdvv 3037 . . . 4  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  -> 
( E. w  e.  X  E. x  e.  X  ( y  =  ( F `  w
)  /\  z  =  ( F `  x ) )  ->  ( y
( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) )
349, 33syld 47 . . 3  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  -> 
( ( y  e.  Y  /\  z  e.  Y )  ->  (
y ( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) )
3534ralrimivv 2970 . 2  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  ->  A. y  e.  Y  A. z  e.  Y  ( y ( 2nd `  S ) z )  =  ( z ( 2nd `  S ) y ) )
36 crnghomfo.3 . . 3  |-  J  =  ( 1st `  S
)
37 crnghomfo.4 . . 3  |-  Y  =  ran  J
3836, 18, 37iscrngo2 33796 . 2  |-  ( S  e. CRingOps 
<->  ( S  e.  RingOps  /\  A. y  e.  Y  A. z  e.  Y  (
y ( 2nd `  S
) z )  =  ( z ( 2nd `  S ) y ) ) )
391, 35, 38sylanbrc 698 1  |-  ( ( ( R  e. CRingOps  /\  S  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  F : X -onto-> Y ) )  ->  S  e. CRingOps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ran crn 5115   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RingOpscrngo 33693    RngHom crnghom 33759  CRingOpsccring 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-rngo 33694  df-rngohom 33762  df-com2 33789  df-crngo 33793
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator