Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Structured version   Visualization version   Unicode version

Theorem rngohommul 33769
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1  |-  G  =  ( 1st `  R
)
rnghommul.2  |-  X  =  ran  G
rnghommul.3  |-  H  =  ( 2nd `  R
)
rnghommul.4  |-  K  =  ( 2nd `  S
)
Assertion
Ref Expression
rngohommul  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A H B ) )  =  ( ( F `
 A ) K ( F `  B
) ) )

Proof of Theorem rngohommul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7  |-  G  =  ( 1st `  R
)
2 rnghommul.3 . . . . . . 7  |-  H  =  ( 2nd `  R
)
3 rnghommul.2 . . . . . . 7  |-  X  =  ran  G
4 eqid 2622 . . . . . . 7  |-  (GId `  H )  =  (GId
`  H )
5 eqid 2622 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
6 rnghommul.4 . . . . . . 7  |-  K  =  ( 2nd `  S
)
7 eqid 2622 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
8 eqid 2622 . . . . . . 7  |-  (GId `  K )  =  (GId
`  K )
91, 2, 3, 4, 5, 6, 7, 8isrngohom 33764 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  ( F : X --> ran  ( 1st `  S )  /\  ( F `  (GId `  H
) )  =  (GId
`  K )  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
109biimpa 501 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( F : X --> ran  ( 1st `  S
)  /\  ( F `  (GId `  H )
)  =  (GId `  K )  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) )
1110simp3d 1075 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `  x
) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) )
12113impa 1259 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) )
13 simpr 477 . . . 4  |-  ( ( ( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )  -> 
( F `  (
x H y ) )  =  ( ( F `  x ) K ( F `  y ) ) )
14132ralimi 2953 . . 3  |-  ( A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )
1512, 14syl 17 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) ) )
16 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x H y )  =  ( A H y ) )
1716fveq2d 6195 . . . 4  |-  ( x  =  A  ->  ( F `  ( x H y ) )  =  ( F `  ( A H y ) ) )
18 fveq2 6191 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
1918oveq1d 6665 . . . 4  |-  ( x  =  A  ->  (
( F `  x
) K ( F `
 y ) )  =  ( ( F `
 A ) K ( F `  y
) ) )
2017, 19eqeq12d 2637 . . 3  |-  ( x  =  A  ->  (
( F `  (
x H y ) )  =  ( ( F `  x ) K ( F `  y ) )  <->  ( F `  ( A H y ) )  =  ( ( F `  A
) K ( F `
 y ) ) ) )
21 oveq2 6658 . . . . 5  |-  ( y  =  B  ->  ( A H y )  =  ( A H B ) )
2221fveq2d 6195 . . . 4  |-  ( y  =  B  ->  ( F `  ( A H y ) )  =  ( F `  ( A H B ) ) )
23 fveq2 6191 . . . . 5  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
2423oveq2d 6666 . . . 4  |-  ( y  =  B  ->  (
( F `  A
) K ( F `
 y ) )  =  ( ( F `
 A ) K ( F `  B
) ) )
2522, 24eqeq12d 2637 . . 3  |-  ( y  =  B  ->  (
( F `  ( A H y ) )  =  ( ( F `
 A ) K ( F `  y
) )  <->  ( F `  ( A H B ) )  =  ( ( F `  A
) K ( F `
 B ) ) ) )
2620, 25rspc2v 3322 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) )  ->  ( F `  ( A H B ) )  =  ( ( F `  A ) K ( F `  B ) ) ) )
2715, 26mpan9 486 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A H B ) )  =  ( ( F `
 A ) K ( F `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693    RngHom crnghom 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-rngohom 33762
This theorem is referenced by:  rngohomco  33773  rngoisocnv  33780  crngohomfo  33805  keridl  33831
  Copyright terms: Public domain W3C validator