MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem16 Structured version   Visualization version   Unicode version

Theorem wfrlem16 7430
Description: Lemma for well-founded recursion. If  z is  R minimal in  ( A  \  dom  F ), then  C is acceptable and thus a subset of  F, but  dom  C is bigger than  dom  F. Thus, 
z cannot be minimal, so  ( A  \  dom  F ) must be empty, and (due to wfrdmss 7421),  dom  F  =  A. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1  |-  R  We  A
wfrlem13.2  |-  R Se  A
wfrlem13.3  |-  F  = wrecs ( R ,  A ,  G )
wfrlem13.4  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
Assertion
Ref Expression
wfrlem16  |-  dom  F  =  A
Distinct variable groups:    z, A    z, F    z, R
Allowed substitution hints:    C( z)    G( z)

Proof of Theorem wfrlem16
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wfrlem13.3 . . 3  |-  F  = wrecs ( R ,  A ,  G )
21wfrdmss 7421 . 2  |-  dom  F  C_  A
3 eldifn 3733 . . . . . 6  |-  ( z  e.  ( A  \  dom  F )  ->  -.  z  e.  dom  F )
4 ssun2 3777 . . . . . . . . 9  |-  { z }  C_  ( dom  F  u.  { z } )
5 vsnid 4209 . . . . . . . . 9  |-  z  e. 
{ z }
64, 5sselii 3600 . . . . . . . 8  |-  z  e.  ( dom  F  u.  { z } )
7 wfrlem13.4 . . . . . . . . . 10  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
87dmeqi 5325 . . . . . . . . 9  |-  dom  C  =  dom  ( F  u.  {
<. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
9 dmun 5331 . . . . . . . . 9  |-  dom  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  u.  dom  {
<. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
10 fvex 6201 . . . . . . . . . . 11  |-  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  e.  _V
1110dmsnop 5609 . . . . . . . . . 10  |-  dom  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. }  =  {
z }
1211uneq2i 3764 . . . . . . . . 9  |-  ( dom 
F  u.  dom  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  =  ( dom  F  u.  { z } )
138, 9, 123eqtri 2648 . . . . . . . 8  |-  dom  C  =  ( dom  F  u.  { z } )
146, 13eleqtrri 2700 . . . . . . 7  |-  z  e. 
dom  C
15 wfrlem13.1 . . . . . . . . . . . 12  |-  R  We  A
16 wfrlem13.2 . . . . . . . . . . . 12  |-  R Se  A
1715, 16, 1, 7wfrlem15 7429 . . . . . . . . . . 11  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  C  e.  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } )
18 elssuni 4467 . . . . . . . . . . 11  |-  ( C  e.  { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }  ->  C  C_  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) } )
1917, 18syl 17 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  C  C_ 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) } )
20 df-wrecs 7407 . . . . . . . . . . 11  |- wrecs ( R ,  A ,  G
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  A  /\  A. y  e.  x  Pred ( R ,  A ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A , 
y ) ) ) ) }
211, 20eqtri 2644 . . . . . . . . . 10  |-  F  = 
U. { f  |  E. x ( f  Fn  x  /\  (
x  C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
2219, 21syl6sseqr 3652 . . . . . . . . 9  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  C  C_  F )
23 dmss 5323 . . . . . . . . 9  |-  ( C 
C_  F  ->  dom  C 
C_  dom  F )
2422, 23syl 17 . . . . . . . 8  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  dom  C 
C_  dom  F )
2524sseld 3602 . . . . . . 7  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  (
z  e.  dom  C  ->  z  e.  dom  F
) )
2614, 25mpi 20 . . . . . 6  |-  ( ( z  e.  ( A 
\  dom  F )  /\  Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )  ->  z  e.  dom  F )
273, 26mtand 691 . . . . 5  |-  ( z  e.  ( A  \  dom  F )  ->  -.  Pred ( R ,  ( A  \  dom  F
) ,  z )  =  (/) )
2827nrex 3000 . . . 4  |-  -.  E. z  e.  ( A  \  dom  F ) Pred ( R ,  ( A  \  dom  F
) ,  z )  =  (/)
29 df-ne 2795 . . . . 5  |-  ( ( A  \  dom  F
)  =/=  (/)  <->  -.  ( A  \  dom  F )  =  (/) )
30 difss 3737 . . . . . 6  |-  ( A 
\  dom  F )  C_  A
3115, 16tz6.26i 5712 . . . . . 6  |-  ( ( ( A  \  dom  F )  C_  A  /\  ( A  \  dom  F
)  =/=  (/) )  ->  E. z  e.  ( A  \  dom  F )
Pred ( R , 
( A  \  dom  F ) ,  z )  =  (/) )
3230, 31mpan 706 . . . . 5  |-  ( ( A  \  dom  F
)  =/=  (/)  ->  E. z  e.  ( A  \  dom  F ) Pred ( R ,  ( A  \  dom  F ) ,  z )  =  (/) )
3329, 32sylbir 225 . . . 4  |-  ( -.  ( A  \  dom  F )  =  (/)  ->  E. z  e.  ( A  \  dom  F ) Pred ( R ,  ( A  \  dom  F ) ,  z )  =  (/) )
3428, 33mt3 192 . . 3  |-  ( A 
\  dom  F )  =  (/)
35 ssdif0 3942 . . 3  |-  ( A 
C_  dom  F  <->  ( A  \  dom  F )  =  (/) )
3634, 35mpbir 221 . 2  |-  A  C_  dom  F
372, 36eqssi 3619 1  |-  dom  F  =  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U.cuni 4436   Se wse 5071    We wwe 5072   dom cdm 5114    |` cres 5116   Predcpred 5679    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfr1  7433  wfr2  7434
  Copyright terms: Public domain W3C validator