MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff Structured version   Visualization version   Unicode version

Theorem nff 6041
Description: Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nff.1  |-  F/_ x F
nff.2  |-  F/_ x A
nff.3  |-  F/_ x B
Assertion
Ref Expression
nff  |-  F/ x  F : A --> B

Proof of Theorem nff
StepHypRef Expression
1 df-f 5892 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
2 nff.1 . . . 4  |-  F/_ x F
3 nff.2 . . . 4  |-  F/_ x A
42, 3nffn 5987 . . 3  |-  F/ x  F  Fn  A
52nfrn 5368 . . . 4  |-  F/_ x ran  F
6 nff.3 . . . 4  |-  F/_ x B
75, 6nfss 3596 . . 3  |-  F/ x ran  F  C_  B
84, 7nfan 1828 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  C_  B
)
91, 8nfxfr 1779 1  |-  F/ x  F : A --> B
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   F/wnf 1708   F/_wnfc 2751    C_ wss 3574   ran crn 5115    Fn wfn 5883   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-fun 5890  df-fn 5891  df-f 5892
This theorem is referenced by:  nff1  6099  nfwrd  13333  lfgrnloop  26020  fcomptf  29458  aciunf1lem  29462  esumfzf  30131  esumfsup  30132  poimirlem24  33433  sdclem1  33539  dffo3f  39364  fmuldfeqlem1  39814  fnlimfvre  39906  dvnmul  40158  stoweidlem53  40270  stoweidlem54  40271  stoweidlem57  40274  sge0iunmpt  40635
  Copyright terms: Public domain W3C validator