MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo3 Structured version   Visualization version   Unicode version

Theorem dffo3 6374
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
dffo3  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dffo3
StepHypRef Expression
1 dffo2 6119 . 2  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  ran  F  =  B ) )
2 ffn 6045 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
3 fnrnfv 6242 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
43eqeq1d 2624 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  =  B  <->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
52, 4syl 17 . . . 4  |-  ( F : A --> B  -> 
( ran  F  =  B 
<->  { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B ) )
6 simpr 477 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  =  ( F `  x ) )
7 ffvelrn 6357 . . . . . . . . . . . 12  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
87adantr 481 . . . . . . . . . . 11  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  ( F `  x )  e.  B
)
96, 8eqeltrd 2701 . . . . . . . . . 10  |-  ( ( ( F : A --> B  /\  x  e.  A
)  /\  y  =  ( F `  x ) )  ->  y  e.  B )
109exp31 630 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x  e.  A  ->  ( y  =  ( F `  x )  ->  y  e.  B
) ) )
1110rexlimdv 3030 . . . . . . . 8  |-  ( F : A --> B  -> 
( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B
) )
1211biantrurd 529 . . . . . . 7  |-  ( F : A --> B  -> 
( ( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) ) )
13 dfbi2 660 . . . . . . 7  |-  ( ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  ( ( E. x  e.  A  y  =  ( F `  x )  ->  y  e.  B )  /\  (
y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
1412, 13syl6rbbr 279 . . . . . 6  |-  ( F : A --> B  -> 
( ( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B )  <-> 
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
1514albidv 1849 . . . . 5  |-  ( F : A --> B  -> 
( A. y ( E. x  e.  A  y  =  ( F `  x )  <->  y  e.  B )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) ) )
16 abeq1 2733 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B  <->  A. y
( E. x  e.  A  y  =  ( F `  x )  <-> 
y  e.  B ) )
17 df-ral 2917 . . . . 5  |-  ( A. y  e.  B  E. x  e.  A  y  =  ( F `  x )  <->  A. y
( y  e.  B  ->  E. x  e.  A  y  =  ( F `  x ) ) )
1815, 16, 173bitr4g 303 . . . 4  |-  ( F : A --> B  -> 
( { y  |  E. x  e.  A  y  =  ( F `  x ) }  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
195, 18bitrd 268 . . 3  |-  ( F : A --> B  -> 
( ran  F  =  B 
<-> 
A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
2019pm5.32i 669 . 2  |-  ( ( F : A --> B  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
211, 20bitri 264 1  |-  ( F : A -onto-> B  <->  ( F : A --> B  /\  A. y  e.  B  E. x  e.  A  y  =  ( F `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896
This theorem is referenced by:  dffo4  6375  foelrn  6378  foco2  6379  foco2OLD  6380  fcofo  6543  foov  6808  resixpfo  7946  fofinf1o  8241  wdom2d  8485  brwdom3  8487  isf32lem9  9183  hsmexlem2  9249  cnref1o  11827  wwlktovfo  13701  1arith  15631  fullestrcsetc  16791  fullsetcestrc  16806  orbsta  17746  symgextfo  17842  symgfixfo  17859  pwssplit1  19059  znf1o  19900  cygznlem3  19918  scmatfo  20336  m2cpmfo  20561  pm2mpfo  20619  recosf1o  24281  efif1olem4  24291  dvdsmulf1o  24920  wlkpwwlkf1ouspgr  26765  wlknwwlksnsur  26776  wlkwwlksur  26783  wwlksnextsur  26795  clwwlksfo  26918  clwlksfoclwwlk  26963  eucrctshift  27103  frgrncvvdeqlem9  27171  numclwlk1lem2fo  27228  subfacp1lem3  31164  cvmfolem  31261  finixpnum  33394  wessf1ornlem  39371  projf1o  39386  sumnnodd  39862  dvnprodlem1  40161  fourierdlem54  40377  nnfoctbdjlem  40672  isomenndlem  40744  sprsymrelfo  41747  uspgrsprfo  41756
  Copyright terms: Public domain W3C validator