| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo4 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
| Ref | Expression |
|---|---|
| dffo4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 6119 |
. . 3
| |
| 2 | simpl 473 |
. . . 4
| |
| 3 | vex 3203 |
. . . . . . . . . 10
| |
| 4 | 3 | elrn 5366 |
. . . . . . . . 9
|
| 5 | eleq2 2690 |
. . . . . . . . 9
| |
| 6 | 4, 5 | syl5bbr 274 |
. . . . . . . 8
|
| 7 | 6 | biimpar 502 |
. . . . . . 7
|
| 8 | 7 | adantll 750 |
. . . . . 6
|
| 9 | ffn 6045 |
. . . . . . . . . . 11
| |
| 10 | fnbr 5993 |
. . . . . . . . . . . 12
| |
| 11 | 10 | ex 450 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | syl 17 |
. . . . . . . . . 10
|
| 13 | 12 | ancrd 577 |
. . . . . . . . 9
|
| 14 | 13 | eximdv 1846 |
. . . . . . . 8
|
| 15 | df-rex 2918 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6ibr 242 |
. . . . . . 7
|
| 17 | 16 | ad2antrr 762 |
. . . . . 6
|
| 18 | 8, 17 | mpd 15 |
. . . . 5
|
| 19 | 18 | ralrimiva 2966 |
. . . 4
|
| 20 | 2, 19 | jca 554 |
. . 3
|
| 21 | 1, 20 | sylbi 207 |
. 2
|
| 22 | fnbrfvb 6236 |
. . . . . . . . 9
| |
| 23 | 22 | biimprd 238 |
. . . . . . . 8
|
| 24 | eqcom 2629 |
. . . . . . . 8
| |
| 25 | 23, 24 | syl6ib 241 |
. . . . . . 7
|
| 26 | 9, 25 | sylan 488 |
. . . . . 6
|
| 27 | 26 | reximdva 3017 |
. . . . 5
|
| 28 | 27 | ralimdv 2963 |
. . . 4
|
| 29 | 28 | imdistani 726 |
. . 3
|
| 30 | dffo3 6374 |
. . 3
| |
| 31 | 29, 30 | sylibr 224 |
. 2
|
| 32 | 21, 31 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 |
| This theorem is referenced by: dffo5 6376 exfo 6377 brdom3 9350 phpreu 33393 poimirlem26 33435 |
| Copyright terms: Public domain | W3C validator |