Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege116 Structured version   Visualization version   Unicode version

Theorem frege116 38273
Description: One direction of dffrege115 38272. Proposition 116 of [Frege1879] p. 77. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege116.x  |-  X  e.  U
Assertion
Ref Expression
frege116  |-  ( Fun  `' `' R  ->  A. b
( b R X  ->  A. a ( b R a  ->  a  =  X ) ) )
Distinct variable groups:    a, b, R    X, a, b
Allowed substitution hints:    U( a, b)

Proof of Theorem frege116
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 dffrege115 38272 . 2  |-  ( A. c A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  Fun  `' `' R )
2 frege116.x . . . 4  |-  X  e.  U
32frege68c 38225 . . 3  |-  ( ( A. c A. b
( b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  Fun  `' `' R )  ->  ( Fun  `' `' R  ->  [. X  /  c ]. A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) ) ) )
4 sbcal 3485 . . . 4  |-  ( [. X  /  c ]. A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. b [. X  /  c ]. ( b R c  ->  A. a ( b R a  ->  a  =  c ) ) )
5 sbcimg 3477 . . . . . . 7  |-  ( X  e.  U  ->  ( [. X  /  c ]. ( b R c  ->  A. a ( b R a  ->  a  =  c ) )  <-> 
( [. X  /  c ]. b R c  ->  [. X  /  c ]. A. a ( b R a  ->  a  =  c ) ) ) )
62, 5ax-mp 5 . . . . . 6  |-  ( [. X  /  c ]. (
b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  ( [. X  /  c ]. b R c  ->  [. X  /  c ]. A. a ( b R a  ->  a  =  c ) ) )
7 sbcbr2g 4710 . . . . . . . . 9  |-  ( X  e.  U  ->  ( [. X  /  c ]. b R c  <->  b R [_ X  /  c ]_ c ) )
82, 7ax-mp 5 . . . . . . . 8  |-  ( [. X  /  c ]. b R c  <->  b R [_ X  /  c ]_ c )
9 csbvarg 4003 . . . . . . . . . 10  |-  ( X  e.  U  ->  [_ X  /  c ]_ c  =  X )
102, 9ax-mp 5 . . . . . . . . 9  |-  [_ X  /  c ]_ c  =  X
1110breq2i 4661 . . . . . . . 8  |-  ( b R [_ X  / 
c ]_ c  <->  b R X )
128, 11bitri 264 . . . . . . 7  |-  ( [. X  /  c ]. b R c  <->  b R X )
13 sbcal 3485 . . . . . . . 8  |-  ( [. X  /  c ]. A. a ( b R a  ->  a  =  c )  <->  A. a [. X  /  c ]. ( b R a  ->  a  =  c ) )
14 sbcimg 3477 . . . . . . . . . . 11  |-  ( X  e.  U  ->  ( [. X  /  c ]. ( b R a  ->  a  =  c )  <->  ( [. X  /  c ]. b R a  ->  [. X  /  c ]. a  =  c ) ) )
152, 14ax-mp 5 . . . . . . . . . 10  |-  ( [. X  /  c ]. (
b R a  -> 
a  =  c )  <-> 
( [. X  /  c ]. b R a  ->  [. X  /  c ]. a  =  c
) )
16 sbcg 3503 . . . . . . . . . . . 12  |-  ( X  e.  U  ->  ( [. X  /  c ]. b R a  <->  b R
a ) )
172, 16ax-mp 5 . . . . . . . . . . 11  |-  ( [. X  /  c ]. b R a  <->  b R
a )
18 sbceq2g 3990 . . . . . . . . . . . . 13  |-  ( X  e.  U  ->  ( [. X  /  c ]. a  =  c  <->  a  =  [_ X  / 
c ]_ c ) )
192, 18ax-mp 5 . . . . . . . . . . . 12  |-  ( [. X  /  c ]. a  =  c  <->  a  =  [_ X  /  c ]_ c
)
2010eqeq2i 2634 . . . . . . . . . . . 12  |-  ( a  =  [_ X  / 
c ]_ c  <->  a  =  X )
2119, 20bitri 264 . . . . . . . . . . 11  |-  ( [. X  /  c ]. a  =  c  <->  a  =  X )
2217, 21imbi12i 340 . . . . . . . . . 10  |-  ( (
[. X  /  c ]. b R a  ->  [. X  /  c ]. a  =  c
)  <->  ( b R a  ->  a  =  X ) )
2315, 22bitri 264 . . . . . . . . 9  |-  ( [. X  /  c ]. (
b R a  -> 
a  =  c )  <-> 
( b R a  ->  a  =  X ) )
2423albii 1747 . . . . . . . 8  |-  ( A. a [. X  /  c ]. ( b R a  ->  a  =  c )  <->  A. a ( b R a  ->  a  =  X ) )
2513, 24bitri 264 . . . . . . 7  |-  ( [. X  /  c ]. A. a ( b R a  ->  a  =  c )  <->  A. a
( b R a  ->  a  =  X ) )
2612, 25imbi12i 340 . . . . . 6  |-  ( (
[. X  /  c ]. b R c  ->  [. X  /  c ]. A. a ( b R a  ->  a  =  c ) )  <-> 
( b R X  ->  A. a ( b R a  ->  a  =  X ) ) )
276, 26bitri 264 . . . . 5  |-  ( [. X  /  c ]. (
b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  ( b R X  ->  A. a
( b R a  ->  a  =  X ) ) )
2827albii 1747 . . . 4  |-  ( A. b [. X  /  c ]. ( b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  A. b ( b R X  ->  A. a
( b R a  ->  a  =  X ) ) )
294, 28bitri 264 . . 3  |-  ( [. X  /  c ]. A. b ( b R c  ->  A. a
( b R a  ->  a  =  c ) )  <->  A. b
( b R X  ->  A. a ( b R a  ->  a  =  X ) ) )
303, 29syl6ib 241 . 2  |-  ( ( A. c A. b
( b R c  ->  A. a ( b R a  ->  a  =  c ) )  <->  Fun  `' `' R )  ->  ( Fun  `' `' R  ->  A. b
( b R X  ->  A. a ( b R a  ->  a  =  X ) ) ) )
311, 30ax-mp 5 1  |-  ( Fun  `' `' R  ->  A. b
( b R X  ->  A. a ( b R a  ->  a  =  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533   class class class wbr 4653   `'ccnv 5113   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-frege1 38084  ax-frege2 38085  ax-frege8 38103  ax-frege52a 38151  ax-frege58b 38195
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-fun 5890
This theorem is referenced by:  frege117  38274
  Copyright terms: Public domain W3C validator