MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp2e Structured version   Visualization version   Unicode version

Theorem dfgrp2e 17448
Description: Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp2.b  |-  B  =  ( Base `  G
)
dfgrp2.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp2e  |-  ( G  e.  Grp  <->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Distinct variable groups:    B, i, n, x    i, G, n, x    .+ , i, n, x   
y, B, z, x   
y, G, z    y,  .+ , z

Proof of Theorem dfgrp2e
StepHypRef Expression
1 dfgrp2.b . . 3  |-  B  =  ( Base `  G
)
2 dfgrp2.p . . 3  |-  .+  =  ( +g  `  G )
31, 2dfgrp2 17447 . 2  |-  ( G  e.  Grp  <->  ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  ( ( n 
.+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
4 ax-1 6 . . . . . . 7  |-  ( G  e.  _V  ->  (
n  e.  B  ->  G  e.  _V )
)
5 fvprc 6185 . . . . . . . 8  |-  ( -.  G  e.  _V  ->  (
Base `  G )  =  (/) )
61eleq2i 2693 . . . . . . . . 9  |-  ( n  e.  B  <->  n  e.  ( Base `  G )
)
7 eleq2 2690 . . . . . . . . . 10  |-  ( (
Base `  G )  =  (/)  ->  ( n  e.  ( Base `  G
)  <->  n  e.  (/) ) )
8 noel 3919 . . . . . . . . . . 11  |-  -.  n  e.  (/)
98pm2.21i 116 . . . . . . . . . 10  |-  ( n  e.  (/)  ->  G  e.  _V )
107, 9syl6bi 243 . . . . . . . . 9  |-  ( (
Base `  G )  =  (/)  ->  ( n  e.  ( Base `  G
)  ->  G  e.  _V ) )
116, 10syl5bi 232 . . . . . . . 8  |-  ( (
Base `  G )  =  (/)  ->  ( n  e.  B  ->  G  e. 
_V ) )
125, 11syl 17 . . . . . . 7  |-  ( -.  G  e.  _V  ->  ( n  e.  B  ->  G  e.  _V )
)
134, 12pm2.61i 176 . . . . . 6  |-  ( n  e.  B  ->  G  e.  _V )
1413a1d 25 . . . . 5  |-  ( n  e.  B  ->  ( A. x  e.  B  ( ( n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  ->  G  e.  _V ) )
1514rexlimiv 3027 . . . 4  |-  ( E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  ->  G  e.  _V )
161, 2issgrpv 17286 . . . 4  |-  ( G  e.  _V  ->  ( G  e. SGrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) ) )
1715, 16syl 17 . . 3  |-  ( E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n )  -> 
( G  e. SGrp  <->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) ) ) )
1817pm5.32ri 670 . 2  |-  ( ( G  e. SGrp  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) )  <-> 
( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )  /\  E. n  e.  B  A. x  e.  B  ( (
n  .+  x )  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
193, 18bitri 264 1  |-  ( G  e.  Grp  <->  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )  /\  E. n  e.  B  A. x  e.  B  (
( n  .+  x
)  =  x  /\  E. i  e.  B  ( i  .+  x )  =  n ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SGrpcsgrp 17283   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator